Concept explainers
The (aq) designation listed after a solute indicates the process of hydration. Using KBr(aq) and C2H5OH(aq) as your examples, explain the process of hydration for soluble ionic compounds and for soluble covalent compounds.
Interpretation: The process of hydration for soluble ionic compounds and soluble covalent compounds with
Concept Introduction: When an ionic compound is dissolved in water, the positive ends of the water molecules are attracted to the negative charged ions and that negative ends are attracted to the positive charged ions. This process is called as hydration.
Answer to Problem 1RQ
Answer
Soluble ionic compounds have to tendency to breakup into their positive and negatively charged ions when they are dissolved into solution.
In
In the hydration process for ions, the partial negative end of the polar water molecules surrounds and stabilizes the cations in the solution. The water molecules present here would align themselves in such a way that the oxygen end of water aligns with the
In the case of
This is assumption when an aqueous solution (aq) is placed after an ionic compound.
Soluble covalent compounds are that compound that doesn’t have to tendency to break into ions when they are dissolved in solution.
Consider,
The hydration process for polar covalent solutes takes place when the covalent solutes and solvents align themselves such that their opposite charged parts attract each other.
The partial negative end of
This is the hydration process for polar covalent compounds. This is assumption when an aqueous solution (aq) is placed after an ionic compound.
It is difficult to predict the partial negative ends and partial positive ends of polar covalent compounds.
Explanation of Solution
Explanation
To explain the process of hydration in soluble ionic compounds
The process of hydration can be defined as dissolution of ionic compound in water, where
the positive ends of the water molecules are attracted to the negative charged ions and that negative ends are attracted to the positive charged ions.
When an ionic compound that is soluble in water can break apart into their ions upon dissolution such ionic compounds are called as soluble ionic compounds.
Taking the example of
The dissolution of
The equation can be given as,
In the hydration process for ions, the partial negative end of the polar water molecules surrounds and stabilizes the cations in the solution. The water molecules present here would align themselves in such a way that the oxygen end of water aligns with the
In the case of
This is assumption when an aqueous solution (aq) is placed after an ionic compound.
The separation of ions that are placed in solution is surrounded by the water that is permitable. There is an enthalpy change. The enthalpy change for this process is called as hydration enthalpy.
When a compound is made to get soluble in water, there is no break apart into their ions upon dissolution such ionic compounds are called as soluble covalent compounds.
To explain the process of hydration in soluble covalent compound
Soluble covalent compounds are that compound that doesn’t have to tendency to break into ions when they are dissolved in solution.
Consider,
The hydration process for polar covalent solutes takes place when the covalent solutes and solvents align themselves such that their opposite charged parts attract each other.
The partial negative end of
This is the hydration process for polar covalent compounds. This is assumption when an aqueous solution (aq) is placed after an ionic compound.
It is difficult to predict the partial negative ends and partial positive ends of polar covalent compounds.
The concept of hydration of soluble ionic and covalent compounds were explained with
Want to see more full solutions like this?
Chapter 4 Solutions
EBK CHEMISTRY
- Keggin structure of heteropolyanions.arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardAt pil below about 35 woon (Fe) oxidizes in streams according to the following Water in a reservoir at 20°C has a pH of 7.7 and contains the following constituents: Constituent (g) + Conc. (mg/L) Ca2+ 38 HCO3 abiotic oxid 183 HO Ferrous iron under these conditions and at 20°Cis Estimate the activities of Ca2+ and HCO3-, using an appropriate equation to compute the activity coefficients. (atomic weight: Ca 40)arrow_forward
- Predict the major products of the following reaction. 田 Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. 口 + X C₁₂ Click and drag to start drawing a structure.arrow_forwardH C-OCH H-C=C÷CH₂ IV Questi Predict the correct splitting tree for circled hydrogen in the structure below. A B C III D IVarrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning