
Concept explainers
The (aq) designation listed after a solute indicates the process of hydration. Using KBr(aq) and C2H5OH(aq) as your examples, explain the process of hydration for soluble ionic compounds and for soluble covalent compounds.

Interpretation: The process of hydration for soluble ionic compounds and soluble covalent compounds with
Concept Introduction: When an ionic compound is dissolved in water, the positive ends of the water molecules are attracted to the negative charged ions and that negative ends are attracted to the positive charged ions. This process is called as hydration.
Answer to Problem 1RQ
Answer
Soluble ionic compounds have to tendency to breakup into their positive and negatively charged ions when they are dissolved into solution.
In
In the hydration process for ions, the partial negative end of the polar water molecules surrounds and stabilizes the cations in the solution. The water molecules present here would align themselves in such a way that the oxygen end of water aligns with the
In the case of
This is assumption when an aqueous solution (aq) is placed after an ionic compound.
Soluble covalent compounds are that compound that doesn’t have to tendency to break into ions when they are dissolved in solution.
Consider,
The hydration process for polar covalent solutes takes place when the covalent solutes and solvents align themselves such that their opposite charged parts attract each other.
The partial negative end of
This is the hydration process for polar covalent compounds. This is assumption when an aqueous solution (aq) is placed after an ionic compound.
It is difficult to predict the partial negative ends and partial positive ends of polar covalent compounds.
Explanation of Solution
Explanation
To explain the process of hydration in soluble ionic compounds
The process of hydration can be defined as dissolution of ionic compound in water, where
the positive ends of the water molecules are attracted to the negative charged ions and that negative ends are attracted to the positive charged ions.
When an ionic compound that is soluble in water can break apart into their ions upon dissolution such ionic compounds are called as soluble ionic compounds.
Taking the example of
The dissolution of
The equation can be given as,
In the hydration process for ions, the partial negative end of the polar water molecules surrounds and stabilizes the cations in the solution. The water molecules present here would align themselves in such a way that the oxygen end of water aligns with the
In the case of
This is assumption when an aqueous solution (aq) is placed after an ionic compound.
The separation of ions that are placed in solution is surrounded by the water that is permitable. There is an enthalpy change. The enthalpy change for this process is called as hydration enthalpy.
When a compound is made to get soluble in water, there is no break apart into their ions upon dissolution such ionic compounds are called as soluble covalent compounds.
To explain the process of hydration in soluble covalent compound
Soluble covalent compounds are that compound that doesn’t have to tendency to break into ions when they are dissolved in solution.
Consider,
The hydration process for polar covalent solutes takes place when the covalent solutes and solvents align themselves such that their opposite charged parts attract each other.
The partial negative end of
This is the hydration process for polar covalent compounds. This is assumption when an aqueous solution (aq) is placed after an ionic compound.
It is difficult to predict the partial negative ends and partial positive ends of polar covalent compounds.
The concept of hydration of soluble ionic and covalent compounds were explained with
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry
- presented by Morallen Lig Intermine the hand product for the given mution by adding atoms, bonds, nonhonding diarion panda скуль Step 3: Comp the draw the product Step 2: Agama workup Compithe 429 ملولةarrow_forwardReaction A 0,0arrow_forwardpresented by Morillon Leaning Predict the organic product for the min кусур HSC Adithane carved arnown to come than that to the condon slchroruis in acid in in aquishri with ноюarrow_forward
- 6.15PM Sun Mar 30 K Draw the major product of this reaction. Include any relevant stereochemistry. Ignore inorganic byproducts. Problem 1 of O H [PhзPCH2CH3]*C|¯ NaH Drawing > Q Atoms, Bonds and Draw or tap a nearrow_forward8:17 PM Sun Mar 30 Draw the major product of this reaction. Ignore inorganic byproducts. HSCH2CH2CH2SH, BF3 Probler Drawing Ato Bonds Clarrow_forwardpresented by Mr L How the coprion. (Il Done in no wraction, dew the starting redential) доarrow_forward
- 8:16 PM Sun Mar 30 K Draw the major product of this reaction. Ignore inorganic byproducts. Proble 1. CH3MgBr 2. H3O+ F Drawingarrow_forwardо но оarrow_forwardName the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution 10+ Now the product. The product has a molecular formula f b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with comply Draw the major organic structure inhalationarrow_forward
- Macmillan Learning Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C,H,NH*)(CICTO3), commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by PCC when carried out in an anhydrous solvent such as CH₂C₁₂. PCC Intermediate OH CH2Cl2 Draw the intermediate. Select Draw Templates More с H Cr о Product Draw the product. Erase Select Draw Templates More H о Erasearrow_forwardIf I have 1-bromopropene, to obtain compound A, I have to add NaOH and another compound. Indicate which compound that would be. A C6H5 CH3arrow_forwardProvide the reagents for the following reactions.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning





