Concept explainers
(a)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(a)
Answer to Problem 1P
The given truss is unstable.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Show the conditions for plane truss as follows:
Here, m is the number of members of the truss, r is the support reactions and j is the number of joints.
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is unstable.
(b)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(b)
Answer to Problem 1P
The given truss is statically determinate.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is statically determinate.
(c)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(c)
Answer to Problem 1P
The given truss is statically determinate.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Compare the values of m, r, and j with Equation (1).
Thus, the plane truss is statically determinate.
(d)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(d)
Answer to Problem 1P
The given truss is unstable.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is unstable.
Want to see more full solutions like this?
Chapter 4 Solutions
Structural Analysis, Si Edition (mindtap Course List)
- 4.1 through 4.5 Classify each of the plane trusses shown as unstable, statically determinate, or statically indeterminate. If the truss is statically indeterminate, then determine the degree of static indeterminacy.arrow_forwardClassify the plane truss shown as unstable, statically determinate, or statically indeterminate. If the truss is statically indeterminate, then determine the degree of static indeterminacy.arrow_forward7-24 Determine the forces in members DE, EI, and HI of the truss shown in Fig. 3 kN 8 kN 5 kN 3 m B 3 m 4 m 4 m 4 m 4 marrow_forward
- For the trusses shown, determine the forces acting on members PC, PJ and PL. 1m 1m 2m 16 kN 16 kN 32 kN 32 kN 8@2m=16marrow_forwardClassify each of the plane trusses shown in Fig. 4.15 as unstable, statically determinate, or statically indeterminate. If the truss is statically indeterminate, then determine the degree of static indeterminacy.arrow_forwardSection 4.5 4.6 through 4.28 Determine the force in each member of the truss shown by the method of joints. T 5 ft Į FIG. P4.13 D A -12 ft 12 5 6.5 k B 20 k 12 ft E 12 ft 10 karrow_forward
- A truss is loaded and supported as shown in Ex. 10.4.2 Fig. 10.4.2. If force in the member CE is 30 kN tensile, then determine W. Hence obtain the force in the member AC. 80 kN A 460⁰ E W 'D 60°60° C 30⁰ B 4m 4 m Fig. 10.4.2arrow_forwardSTRUCTURAL THEORYarrow_forwardDetermine the forces in members CD, IJ, and NJ of the K-truss in terms of P. (Draw a free body diagram)arrow_forward