Concept explainers
(a)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(a)
Answer to Problem 1P
The given truss is unstable.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Show the conditions for plane truss as follows:
Here, m is the number of members of the truss, r is the support reactions and j is the number of joints.
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is unstable.
(b)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(b)
Answer to Problem 1P
The given truss is statically determinate.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is statically determinate.
(c)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(c)
Answer to Problem 1P
The given truss is statically determinate.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Compare the values of m, r, and j with Equation (1).
Thus, the plane truss is statically determinate.
(d)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(d)
Answer to Problem 1P
The given truss is unstable.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is unstable.
Want to see more full solutions like this?
Chapter 4 Solutions
Structural Analysis, Si Edition (mindtap Course List)
- Please answer the following and show the step by step answer on clear paperarrow_forwardProblem #1 (Beam optimization). Calculate the length "a" of AB such that the bending moment diagram is optimized (the absolute value of the max and the min is at its lowest). Then draw the shear and moment diagram for the optimized length. Optimize the length to the nearest 0.1 m. You can use RISA 2D as a tool to find the optimized length, however you need to solve for the support reactions at A, B and C by hand and draw the shear and moment diagram by hand. w=20 kN/m A + + a 12 m B Carrow_forward2. Using the Green-Ampt Model, compute the infiltration rate, f, and cumulative infiltration, F, after one hour of infiltration into a sandy clay loam soil. Assume initial moisture conditions are midway between the field capacity and wilting point and that water is ponded to a small but negligible depth on the surface.arrow_forward
- Assignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardA1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forwardPlease show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forward
- Find required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward•Two types of concrete storm water drains are comparing: 1-pipe diameter 2m running full. 2-open channel rectangular profile, bottom width 2m and water depth 1.0 m. The drains are laid at gradient of %1.0; manning coefficient=0.013. Determine the velocity of flow and discharge rate for the circular drain. Determine the velocity of flow and discharge rate for the rectangular open culvert.arrow_forward
- A1.2- For the frame shown in Figure 2, draw the bending moment, shear force, and axial force diagrams for the shown factored loading case. Note: All loads indicated in Figure 2 are already factored. W₁ = 25 kN/m Figure 2 777 6.0 m M= 10 kN.m P₁ = 20 kN 2.5 marrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forward