
Concept explainers
(a)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(a)

Answer to Problem 1P
The given truss is unstable.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Show the conditions for plane truss as follows:
Here, m is the number of members of the truss, r is the support reactions and j is the number of joints.
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is unstable.
(b)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(b)

Answer to Problem 1P
The given truss is statically determinate.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is statically determinate.
(c)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(c)

Answer to Problem 1P
The given truss is statically determinate.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Compare the values of m, r, and j with Equation (1).
Thus, the plane truss is statically determinate.
(d)
Categorize the given plane truss as unstable, statically indeterminate or statically determinate.
Find the degree of static indeterminacy in case the given truss is statically indeterminate.
(d)

Answer to Problem 1P
The given truss is unstable.
Explanation of Solution
Given information:
The Figure of plane truss is shown.
Calculation:
Refer the Figure of the given plane truss.
The number of the members in the plane truss is
The number of reaction is
The number of the joints in the plane truss is
Substitute the values of m, r, and j with Equation (1).
Thus, the plane truss is unstable.
Want to see more full solutions like this?
Chapter 4 Solutions
Structural Analysis
- = = Q1/A cantilever sheet-pile wall penetrating a granular soil. Here, L₁= 3 m, L2 = 6 m, y 17.3kN/m³, Ysat 19.4 kN/m², and 0= 30. a. What is the theoretical depth of embedment, D? b. For a 30% increase in D, what should be the total length of the sheet piles? c. What should be the minimum section modulus of the sheet piles? Use σall = 172 MN/m².arrow_forward10.37 What is ffor the flow of water at 10°C through a 30-cm cast iron pipe with a mean velocity of 24 m/s?arrow_forward10.60 As shown, water (15°C) is draining from a tank through a galvanized iron pipe. The pipe length is L = 2 m, the tank depth is H = 1 m, and the pipe is a 0.5-inch NPS schedule 40. Calculate the velocity in the pipe. Neglect component head loss. H Pipe of diameter D L Problems 10.59 and 10.60arrow_forward
- 10.53 Water is pumped through a vertical 10-cm new steel pipe to an elevated tank on the roof of a building. The pressure on the discharge side of the pump is 1.6 MPa. What pressure can be expected at a point in the pipe 110 m above the pump when the flow is 0.02 m³/s? Assume T = 20°C.arrow_forward10.61 A pipeline is to be designed to carry crude oil (SG = 0.93, v = 10-5 m²/s) with a discharge of 0.10 m³/s and a head loss per kilometer of 50 m. What diameter of steel pipe is needed? What power output from a pump is required to maintain this flow? Available pipe diameters are 20, 22, and 24 cm.arrow_forwardCalculate the active earth pressure (exerted by the supported soil mass on the right) against the 10-meter-long, dense and smooth sheet pile wall shown in Figure E2:1. The ground surface is loaded with heavy construction machinery applying a pressure of q = 10.0 kPa. Other data is according to the figure.Assume the sheet pile moves sufficiently to the left to reach active failure conditions behind it, and passive failure conditions develop in the soil mass below the excavation bottom. Will the sheet pile wall hold without rain? (Calculate the forces.) Will the sheet pile wall hold if it rains? (Assume water-filled cracks.) If the sheet pile does not hold in any of the above cases – how deep would it need to be embedded in order to hold? Draw diagrams for active and passive earth pressure as well as the resultant earth pressure. gvy=grownd water levelarrow_forward
- The composite beam shown in the figure is subjected to a bending moment Mz=8 kNmMz=8kNm.The elastic moduli for the different parts are E1=30 GPa, E2=20 GPa, and E3=60GPa. a) Determine the reduced moment of inertia IredIred for the entire beam. b) Sketch the bending stress distribution in the beam.arrow_forwardUSING THE ATTACHED SKETCH , DETERMINE THE FOLLOWING: 1. INVERSE DISTANCE, NORTH AZIMUTH AND BEARING BETWEEN CP-102 AND THE SOUTHWEST BUILDING CORNER.2. DETERMINE THE INTERIOR ANGLE AT CP-101 - CP-102 AND THE SOUTHWEST BUILDING CORNER.3. WHAT ARE THE COORDINATES (N,E) AT POINT A AND POINT B IN THE ATTACHED SKETCH?arrow_forwardGiven the following Right Triangle, find the " Area by Coordinates" (Not B*H/2). Report to the nearest Sq. Ft. and to the nearest thousandth of an acre.arrow_forward
- 1) 4,739,281 SQ.FT. = ______________________ ACRES? 2) S 90°00'00" W IS ALSO KNOW AS WHAT CARDINAL DIRECTION? 3) CALCULATE THE NORTH AZIMUTH (NAZ) OF THE FOLLOWING BEARINGS: N 31° 22' 22" E=___________________________NAZ? S 87° 29' 17" W=___________________________NAZ? S 27° 43' 27" E=___________________________NAZ? N 43° 17' 43" E=___________________________NAZ?arrow_forward1) 187.25597°=_____________________________________(DEG-MIN-SEC FORMAT)? 2) CALCULATE THE BEARING AND DIRECTION IN DEG-MIN-SEC OF THE FOLLOWING: NAZ 142°49'18"=____________________________(BEARING/DIRECTION DEG-MIN-SEC)? NAZ 180°00'00"=____________________________(BEARING/DIRECTION DEG-MIN-SEC)? NAZ 270°00'00"=____________________________(BEARING/DIRECTION DEG-MIN-SEC)?arrow_forwardA traffic signal has a 60-second cycle length (Red time + Green time). For the travel direction of interest, the red and green times are 30 seconds each, the arrival rate is constant at 20 [veh/min] and the saturation flow (i.e., the departure rate) is 1 [veh/sec]. a. Calculate the average delay (for all vehicles) for the travel direction of interest. b. Assume a work zone on the street downstream of the intersection so that only 25 [veh/min] (in the direction of interest) can pass. Calculate the average delay caused by the work zone to a vehicle leaving the intersection. Assume that the queue at the work zone never backs- up into the intersection. c. Discuss qualitatively the implications of queue spillback from the work zone on the delay of the system. Traffic Direction (a) Traffic Direction (b)arrow_forward
