The truck that will cause more pavement damage.

Answer to Problem 1P
The truck A will cause more pavement damage.
Explanation of Solution
The truck A will cause more pavement damage.
Given:
The truck A has two singles axles.
Weight of one axle of truck A is
Weight of other axle of truck A is
Weight of single axle of truck B is
Weight of the tandem axle of truck B is
The thickness of hot mix asphalt is
The thickness of soil-cement base is
The thickness of crushed stone sub base is
The drainage coefficients are
Formula Used:
Write the expression for the structural number.
Here,
Write the expression for equivalent singleaxle load for truck A.
Here,
Write the expression for equivalent single axle load for truck B.
Here,
Calculation:
Refer Table
For the hot-mix asphaltic concrete,
For the soil cement base,
For the crushed stone,
Substitute
Consider truck A.
Refer Table
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
Calculate the axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
Calculate the axle load equivalency factor corresponding to pavement structural number
Substitute
Consider truck B.
Refer Table
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
Calculate the axle load equivalency factor corresponding to pavement structural number
Refer Table
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
The axle load equivalency factor corresponding to pavement structural number
Calculate the axle load equivalency factor corresponding to pavement structural number
Substitute
Since,
Conclusion:
Thus, the truck A will cause more damage.
Want to see more full solutions like this?
Chapter 4 Solutions
PRINCIPLES OF HIGHWAY ENGINEERING+TRAFF
- Show step by step solutionarrow_forwardDraw the shear and the moment diagrams for each of the frames below. If the frame is statically indeterminate the reactions have been provided. Problem 1 (Assume pin connections at A, B and C). 30 kN 2 m 5 m 30 kN/m B 60 kN 2 m 2 m A 22 CO Carrow_forwardThis is an old exam practice question. The answer key says the answer is Pmax = 52.8kN but I am confused how they got that.arrow_forward
- F12-45. Car A is traveling with a constant speed of 80 km/h due north, while car B is traveling with a constant speed of 100 km/h due east. Determine the velocity of car B relative to car A. pload Choose a File Question 5 VA - WB VBA V100 111413 + *12-164. The car travels along the circular curve of radius r = 100 ft with a constant speed of v = 30 ft/s. Determine the angular rate of rotation è of the radial liner and the magnitude of the car's acceleration. Probs. 12-163/164 pload Choose a File r = 400 ft 20 ptsarrow_forwardPlease show step by step how to solve this and show formulararrow_forwardPlease solve this question step by step with dia gramarrow_forward
- Use the second picture to answer the question, Thank you so much for your help!arrow_forwardP6.16 A compound shaft (Figure P6.16) consists of a titanium alloy [G= 6,200 ksi] tube (1) and a solid stainless steel [G= 11,500 ksi] shaft (2). Tube (1) has a length L₁ = 40 in., an outside diameter D₁ = 1.75 in., and a wall thickness t₁ = 0.125 in. Shaft (2) has a length 42 = 50 in. and a diameter d₂ = 1.25 in. If an external torque TB = 580 lb ft acts at pulley B in the direction shown, calculate the torque Tcrequired at pulley C so that the rotation angle of pulley Crelative to A is zero. B Te (2) TB (1) FIGURE P6.16arrow_forward7.43 Neglecting head losses, determine what horsepower the pump must deliver to produce the flow as shown. Here, the elevations at points A, B, C, and D are 124 ft, 161 ft, 110 ft, and 90 ft, respectively. The nozzle area is 0.10 ft². B Nozzle Water C Problem 7.43arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



