
Concept explainers
Scientists use models and theories to describe physical phenomena. When a new model is developed, it must be tested to find out if it is an accurate representation. No theory or model of nature is valid unless its predictions are in agreement with experimental results. The laboratory provides an environment where extraneous factors can be minimized and specific predictions can be tested. The process of making, testing, and refining models is usually called the scientific method (see Experiment 1).
An example of this method will be demonstrated in this experiment for a simple pendulum. A “simple” pendulum is one in which a small but substantial mass is suspended on a relatively light string, like the one pictured in Fig. 4.1. If one were to observe the motion of the mass swinging back and forth, which of the following statements do you think would be the most accurate? (It is understood that the motion takes place in a single plane.)
The time for the mass to swing back and forth (from point A to B, and back to A in Fig. 4.1.)
- (a) changes randomly from one swing to the next.
- (b) gets consistently bigger from one swing to the next.
- (c) gets consistently smaller from one swing to the next.
- (d) stays about the same from one swing to the next.
(Circle your choice)

The most accurate statement regarding the motion of a simple pendulum.
Answer to Problem 1EP
Option (d) The time for the mass to swing back and forth stays about the same from one swing to the next.
Explanation of Solution
The time for the mass of the simple pendulum to swing back and forth is termed as the period of oscillation. The period of oscillation of the pendulum depends only on the length of the pendulum and it can be obtained from the relation,
Here,
For a pendulum of fixed length, the period of oscillation remains the same for all oscillations, unless the pendulum is subjected to considerable friction or air resistance.
Conclusion:
Since the time for the mass of the pendulum to swing back and forth stays about the same from one swing to the next, option (d) is correct.
The period of the simple pendulum does not change randomly from one swing to the next. Thus, option (a) is incorrect.
The period of the simple pendulum does not get consistently bigger from one swing to the next. Thus, option (b) is incorrect.
The period of the simple pendulum does not get consistently smaller from one swing to the next. Thus, option (c) is incorrect.
Want to see more full solutions like this?
Chapter 4 Solutions
Physics Laboratory Experiments
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





