
Concept explainers
Interpretation:
The properties of gaseous
Concept introduction:
Kinetic molecular theory of gases serves as a particulate-level explanation of the macroscopic characteristics of gases.

Answer to Problem 1E
The properties of gases that are the result of kinetic theory of gases are:
1. Gases may be compressed and expanded.
2. Gases have low densities
3. Gases exert constant pressure on the walls of the container uniformly in all directions.
Explanation of Solution
The postulates of kinetic molecular theory of gases were introduced to explain the characteristics of gaseous state of matter.
The properties of gaseous state that are the result of kinetic molecular theory of gases are:
1. Gases may be compressed and expanded: One of the postulates of the kinetic molecular theory of gases states that “A gas consists of molecules and empty spaces.” Thus, in between the molecules of gases, there is nothing. Thus, the gases can be compressed and expanded to a desired volume.
2. Gases have low densities: Density of a gas is defined as the mass per unit volume. Since, according to the kinetic molecular theory of gases, the volume occupied by the gas molecules is much smaller than the volume of the space it occupies. Also, the attractive forces are negligible among the gas molecules. Thus, density of a gas is low. The gas molecules are at much distance to each other.
3. Gases exert constant pressure on the walls of the container uniformly in all directions: According to one of the postulates of the kinetic theory of gases, “molecules interact with one another and with the container walls without loss of total kinetic energy”.
Therefore, the characteristics of gaseous state of matter are a result of the kinetic molecular theory of gases.
Want to see more full solutions like this?
Chapter 4 Solutions
Introduction to Chemistry, Special Edition
- NAME: 1. Draw the major product of the following E2 reaction. Make sure you pay attention to REGIOCHEMISTRY and STEREOCHEMISTRY. To get credit for this question, you must EXPLAIN how you got your answer using STRUCTURES and WORDS. Br NaOCH3 acetone F2 reaction To get credit for thisarrow_forward3. Reactions! Fill in the information missing below. Make sure to pay attention to REGIOCHEMISTRY and STEREOCHEMISTRY. Br2 CH3OH + 4. Mechanism! Show the complete arrow pushing mechanism, including all steps and intermediates for the following reactions. To get credit for this, you MUST show how ALL bonds are broken and formed, using arrows to show the movement of electrons. H3O+ HOarrow_forwardPlease provide a synthesis for the Ester using proponoic acid, thank you!arrow_forward
- Please help with the curved arrow mechanism of this reaction, thank youarrow_forwardConcentration (mg/l) Peak Area 0 158 10 10241 20 18425 30 26457 40 37125 50 44256 60 56124 Question: Determine the regression equation (a and b coefficients) from first principlesarrow_forwardConcentration (mg/l) Peak Area 0 158 10 10241 20 18425 30 26457 40 37125 50 44256 60 56124 You have been asked to determine the concentration of citral in a highly valued magnolia essential oil. QUESTION: Calculate the concentration of citral in your highly valued magnolia essential oil which returns a peak area of 41658arrow_forward
- Need help with these problems...if you can please help me understand problems E & F.arrow_forwardPlease help me solve these problems. Thank you in advance.arrow_forwardPredict the products of this organic reaction: O N IN A N + H2O + HCI ? Specifically, in the drawing area below draw the skeletal ("line") structure of the product, or products, of this reaction. If there's more than one product, draw them in any arrangement you like, so long as they aren't touching. If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. 田 C + Explanation Check Click and drag to start drawing a structure. C © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- 6. For each of the following, fill in the synthesis arrows with reagents and show the intermediates. You DO NOT need to use the same number of arrows that are shown (you may use more or less), but the product must be formed from the reactant. Then write the mechanism of one step in the synthesis (you can choose which step to write the mechanism for), including all reagents required, clearly labeling the nucleophile and electrophile for each step, and using curved arrows to show the steps in the mechanism. a. b. OHarrow_forwardDraw the productsarrow_forwardDraw the correct productsarrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER




