Essential Cosmic Perspective
9th Edition
ISBN: 9780135795033
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 18EAP
Decide whether the statement makes sense (or is clearly true) or does not make sense (or is clearly false). Explain clearly: not all of these have definitive answers, so your explanation is more important than your chosen answer.
18. I used Newton’s version of Kepler’s third law to calculate Saturn’s mass from orbital characteristics of its moon Titan.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe your approach to calculation of the gravitational field strength on a planet with a given size (e.g. diameter) and known escape velocity.
O a.
Use Newton's law of universal gravitation.
O b.
Use Newton's 3rd law.
O c.
Use Newton's 1st law.
O d
Use Newton's 2nd law.
O e.
Use law of conservation of energy.
Topic: Kepler's Laws of Planetary Motion
Show the following in your answer:
A. Diagram
B.Given Quantities
C. Unknown Quantities
D. Complete Solution
E. Round answers to 2 decimal places
F. Express answer with the correct units
The Hubble space telescope orbits Earth with an orbital speed of 7.6×103m/s.
A. Calculate its altitude above Earth's surface.
B. What is its period?
Include appropriate units in your final answer. Round off your final answer to two decimal places. Box your final answer.
Follow the given formulas
2. An electric fan is rotating at a constant 72,000 meters per hour, making one complete rotation in 0.17 seconds.
(a) What is the magnitude of the speed of the bug sitting on one of fan's blades? (b) What is the magnitude of
the acceleration of the bug sitting on one of fan's blades?
Chapter 4 Solutions
Essential Cosmic Perspective
Ch. 4 - Prob. 1VSCCh. 4 - Check your understanding of some of the many types...Ch. 4 - Check your understanding of some of the many types...Ch. 4 - Check your understanding of some of the many types...Ch. 4 - Check your understanding of some of the many types...Ch. 4 - Define speed, velocity, and acceleration. What are...Ch. 4 - Define momentum and force. What do we mean when we...Ch. 4 - What is free-fall, and why does it make you...Ch. 4 - Prob. 4EAPCh. 4 - Prob. 5EAP
Ch. 4 - Define kinetic energy, radiative energy, and...Ch. 4 - Define and distinguish temperature and thermal...Ch. 4 - Prob. 8EAPCh. 4 - Summarize the universal law of gravitation both in...Ch. 4 - What is the difference between a bound and an...Ch. 4 - Under what conditions can we use Newton’s version...Ch. 4 - Explain why orbits cannot change spontaneously,...Ch. 4 - Explain how the Moon creates tides on Earth. Why...Ch. 4 - How do the tides vary with the phase of the Moon?...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - Decide whether the statement makes sense (or is...Ch. 4 - A car is accelerating when it is (a) traveling on...Ch. 4 - Compared to their values on Earth, on another...Ch. 4 - Which person is weightless? (a) a child in the air...Ch. 4 - Consider the statement “There’s no gravity in...Ch. 4 - To make a rocket turn left, you need to (a) fire...Ch. 4 - Compared to its angular momentum when it is...Ch. 4 - Prob. 31EAPCh. 4 - If Earth were twice as far from the Sun, the force...Ch. 4 - According to the law of universal gravitation,...Ch. 4 - If the Moon were closer to Earth, high tides would...Ch. 4 - Prob. 35EAPCh. 4 - Testing Gravity. Scientists are constantly trying...Ch. 4 - How Does the Table Know? Thinking deeply about...Ch. 4 - Perpetual Motion Machines. Every so often, someone...Ch. 4 - Group Activity: Your Ultimate Energy Source. Work...Ch. 4 - Weightlessness. Astronauts are weightless when in...Ch. 4 - Einstein’s Famous Formula. a. What is the meaning...Ch. 4 - The Gravitational Law. a. How does quadrupling the...Ch. 4 - Prob. 44EAPCh. 4 - Head to Foot Tides. You and Earth attract each...Ch. 4 - Space Elevator. Some people have proposed using a...Ch. 4 - Prob. 47EAPCh. 4 - Prob. 48EAPCh. 4 - Prob. 49EAPCh. 4 - Prob. 50EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question 1 (Total: 30 points) a. What is a repeat ground-track orbit? b. Explain why repeat ground-track and Sun-synchronous orbits are typically used for Earth observation missions. c. The constraint for a Sun-synchronous and repeat ground-track orbit is given by T = 286, 400, where I is the orbital period in seconds, m the number of days and k the number of revolutions. Explain why this is, in fact, a constraint on the semi-major axis of the orbit.arrow_forwardIn your own words, describe the meaning of Kepler's Third Law of Planetary Motion. Do not use any equations, do not describe the equations in words, just tell me the conceptual meaning.arrow_forwardWhat’s the answer the the three questionsarrow_forward
- Include appropriate units in your final answer. Round off your final answer to two decimal places. Box your final answer. Follow the given formulas 4. The Disk-O-Magic ride spins its occupants inside a flying disk-shaped container. If the circular path the riders follow has an 8.00-m radius and its centripetal acceleration equal to the acceleration due to gravity, then (a) What is the velocity of each rider? (b) How long does it take for the rider to complete one circle?arrow_forwardWhat is the answerarrow_forwardUse the diagram and the fact that Planet A has a nearly circular orbit while Planet B has a highly elliptical orbit to answer the following questions. Use examples of Newton’s and Kepler’s laws in your answers. a. Does Planet B travel faster or slower when it is closest to the Sun than at other times? Explain your answer. b. Which planet takes longer to orbit the Sun? Explain your answer. c. Does the gravitational attraction between these planets increase or decrease as their orbits move them closer together? Explain your answer. d. Which planet has the highest average orbital speed? Explain your answer. e. Which planet travels at about the same speed throughout its orbit? Explain your answer.arrow_forward
- Part B. 1. The table below shows the gravitational force between Saturn and some ring particles that are at different distance from the planet. All of the particles have a mass of 1 kg. Table 1. Distance and Gravitational Force Data Distance of 1- Gravitational kg Ring Particle from Force between Saturn and 1-kg ring particle (in | 10,000 N) 2. Use the data in the table to make a graph of the relationship between distance and gravitational force. Label your graph "Gravitational Force and distance". Center of Saturn (in | 1,000 km) 100 38 Hint: Put the data for distance on the horizontal axis and the data for gravitational force on the vertical axis. 120 26 130 22 150 17 3. Look at your graphed data, and record in your answering sheet any relationship you notice. 180 12 200 9. 220 8 250 280 O 5arrow_forward. Solve the following problems. Use GFSA (Given, Find, Solution, and Answer) on the given space below. Encircle your final answer, write it in scientific notation with 2 decimal places (if possible). You’re involved in the design of a mission carrying humans to the surface of the planet Mars, which has a radius 3.37x106m and a mass of 6.42x1023 kg. The earth weight of the Mar’s lander is 39,200 N. Calculate its weight and the acceleration due to Mar’s gravity at 6.0 x 106 m above the surface of Mars. r= 3.37x106 m h = 6.0x106 m above the surface of Mars.arrow_forward4arrow_forward
- 5arrow_forwardInclude appropriate units in your final answer. Round off your final answer to two decimal places. Box your final answer. Follow the given formulas 3. The second hand of a large clock has a radial acceleration of 0.001 m/s². (a) How far is the point from the axis of rotation of the second hand? (b) What is the magnitude of the speed of the second hand? (Clue: Use T = 60 minutes).arrow_forward7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY