Concept explainers
You have two 500.0-mL aqueous solutions. Solution A is a solution of a metal nitrate that is 8.246% nitrogen by mass. The ionic compound in solution B consists of potassium, chromium, and oxygen; chromium has an oxidation state of + 6 and there are 2 potassiums and 1 chromium in the formula. The masses of the solutes in each of the solutions are the same. When the solutions are added together, a blood-red precipitate forms. After the reaction bas gone to completion, you dry the solid and find that it has a mass of 331.8 g.
a. Identify the ionic compounds in solution A and solution B.
b. Identify the blood-red precipitate.
c. Calculate the concentration (molarity) of all ions in the original solutions.
d. Calculate the concentration (molarity) of all ions in the final solution.
a)
Interpretation: The ionic compounds in solution A and B has to be identified.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The ionic compound in solution A is
Explanation of Solution
Given:
Record the given data
Volume of two aqueous solution =
Mass percent of Nitrogen in solution A =
Mass of precipitate =
The volume of two aqueous solutions along with mass percent of Nitrogen in solution A of metal nitrate and mass of precipitate are recorded as shown above.
To identify the ionic compound in solution A
Molecular mass of oxygen =
Molecular mass of nitrogen =
Compound A contains metal nitrate
Assuming the mass of metal nitrate is
The moles of oxygen is calculated using
Thus, the mass of nitrate =
Case 1:
The metal M is identified as Silver
Case 2:
This is close to
x would not take the value of 3, since the nitrates present would have a higher mass than
Therefore, the compound A is identified as
The ionic compound is solution A is calculated by plugging in the values of mass of Nitrogen in metal nitrate and also by calculating the mass of M and its molar mass. The value of calculated molar mass is matched with value of closest molar mass of element in the periodic table. The ionic compound is identified as
To identify the compound B
Oxidation state of chromium =
The compound B has two Potassium atoms and one Chromium atom. Hence, the formula can be given as,
The oxidation state of oxygen is calculated by,
Therefore, the formula becomes
Compound B is identified
The ionic compound in solution B is identified by calculating the oxidation state of Oxygen and substituting in the unknown x in the formula. The ionic compound in solution B is identified as
b)
Interpretation: The blood-red precipitate has to be identified.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The blood red precipitate is
Explanation of Solution
To identify the blood red precipitate
The blood red precipitate is identified as Silver chromate. A precipitate of silver chromate is formed when aqueous solution of Silver nitrate is reacted with aqueous solution of Potassium chromate. Potassium nitrate remains as spectator ions inside the solution.
The chemical equation can be given as,
c)
Interpretation: The concentration of original solution has to be calculated.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The concentration of all ions in original solution are
Explanation of Solution
Calculate the concentration of ions in original solutions.
Mass of precipitate =
Molar mass of
Molar mass of
The chemical equation can be given as,
From the chemical equation, 2 moles of
From the given question, the reactants are said to have equal masses.
Therefore, the sum of reactant masses must be either,
Assuming that,
Then, when
But we assumed only 194.2 g AgNO3 is present; this cannot be correct. Instead of
Therefore, the concentration of ions in original solution,
The concentrations of individual ions are calculated by plugging in the values of moles taking part in the chemical reaction to the volumes of solutions. The concentrations of individual ions in original solution are found to be
d)
Interpretation: The concentration of final solution has to be calculated.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The concentration of all ions in final solution are
Explanation of Solution
To calculate the concentration of ions in final solution
The moles of spectator ions (
Therefore, the concentrations of individual ions in final solution are
The concentrations of individual ions in final solution are calculated by plugging in values of their respective moles to the volume of the solution. The molarity of individual ions in final solution are found to be
Want to see more full solutions like this?
Chapter 4 Solutions
WebAssign for Zumdahl/Zumdahl/DeCoste's Chemistry, 10th Edition [Instant Access], Single-Term
- Draw all formal charges on the structures below as is and draw 1 resonance structure that is more stable.arrow_forwardPart II. xiao isolated a compound TAD (Ca H 10 N₂) from tobacco and obtained its IR spectrum. Xiao proposed a chemical structure shown below: % Transmittance 4000 3500 3000 2500 2000 Wavenumber (cm-1) 1500 1000 (a) Explain why her proposed structure is inconsistent with the IR spectrum obtained (b) TAD exists as a tautomer of the structure xiao proposed. Draw the structure and explain why it is more compatible with the obtained spectrum. (C) what is the possible source for the fairly intense signal at 1621cm1arrow_forwardAE>AE₁ (Y/N) AE=AE₁ (Y/N) AEarrow_forwardTreatment of 2-phenylpropan-2-amine with methyl 2,4-dibromobutanoate in the presence of a nonnucleophilic base, R3N, involves two successive SN2 reactions and gives compound A. ? NH2 Br Br Propose a structural formula for compound A. You do not have to explicitly draw H atoms. You do not have to consider stereochemistry. In cases where there is more than one answer, just draw one. R3N C14H19NO2 + 2 R3NH*Br Aarrow_forwardCorrectly name this compound using the IUPAC naming system by sorting the components into the correct order. Br IN Ν Harrow_forwardHow is the radical intermediate for this structure formed? Can you please draw arrows from the first radical to the resonance form that would result in this product? I'm lost.arrow_forwardPart VI. (a) calculate the λ max of the compound using woodward - Fieser rules. (b) what types of electronic transitions are present in the compound? (c) what are the prominent peaks in the IR spectrum of the compound?arrow_forwardDon't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward↑ 0 Quiz List - RCC430M_RU05 X Aktiv Learning App × Qdraw resonance structure ×Q draw resonance structure xb My Questions | bartleby ×+ https://app.aktiv.com Draw a resonance structure of pyrrole that has the same number of pi bonds as the original structure. Include all lone pairs in your structure. + N H a 5 19°F Cloudy Q Search Problem 12 of 15 Atoms, Bonds and Rings Charges and Lone Pairs myhp हजु Undo Reset Remove Done Submit Drag To Pan 2:15 PM 1/25/2025arrow_forwardDon't used hand raitingarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning