
Concept explainers
You have two 500.0-mL aqueous solutions. Solution A is a solution of a metal nitrate that is 8.246% nitrogen by mass. The ionic compound in solution B consists of potassium, chromium, and oxygen; chromium has an oxidation state of + 6 and there are 2 potassiums and 1 chromium in the formula. The masses of the solutes in each of the solutions are the same. When the solutions are added together, a blood-red precipitate forms. After the reaction bas gone to completion, you dry the solid and find that it has a mass of 331.8 g.
a. Identify the ionic compounds in solution A and solution B.
b. Identify the blood-red precipitate.
c. Calculate the concentration (molarity) of all ions in the original solutions.
d. Calculate the concentration (molarity) of all ions in the final solution.
a)

Interpretation: The ionic compounds in solution A and B has to be identified.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The ionic compound in solution A is
Explanation of Solution
Given:
Record the given data
Volume of two aqueous solution =
Mass percent of Nitrogen in solution A =
Mass of precipitate =
The volume of two aqueous solutions along with mass percent of Nitrogen in solution A of metal nitrate and mass of precipitate are recorded as shown above.
To identify the ionic compound in solution A
Molecular mass of oxygen =
Molecular mass of nitrogen =
Compound A contains metal nitrate
Assuming the mass of metal nitrate is
The moles of oxygen is calculated using
Thus, the mass of nitrate =
Case 1:
The metal M is identified as Silver
Case 2:
This is close to
x would not take the value of 3, since the nitrates present would have a higher mass than
Therefore, the compound A is identified as
The ionic compound is solution A is calculated by plugging in the values of mass of Nitrogen in metal nitrate and also by calculating the mass of M and its molar mass. The value of calculated molar mass is matched with value of closest molar mass of element in the periodic table. The ionic compound is identified as
To identify the compound B
Oxidation state of chromium =
The compound B has two Potassium atoms and one Chromium atom. Hence, the formula can be given as,
The oxidation state of oxygen is calculated by,
Therefore, the formula becomes
Compound B is identified
The ionic compound in solution B is identified by calculating the oxidation state of Oxygen and substituting in the unknown x in the formula. The ionic compound in solution B is identified as
b)

Interpretation: The blood-red precipitate has to be identified.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The blood red precipitate is
Explanation of Solution
To identify the blood red precipitate
The blood red precipitate is identified as Silver chromate. A precipitate of silver chromate is formed when aqueous solution of Silver nitrate is reacted with aqueous solution of Potassium chromate. Potassium nitrate remains as spectator ions inside the solution.
The chemical equation can be given as,
c)

Interpretation: The concentration of original solution has to be calculated.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The concentration of all ions in original solution are
Explanation of Solution
Calculate the concentration of ions in original solutions.
Mass of precipitate =
Molar mass of
Molar mass of
The chemical equation can be given as,
From the chemical equation, 2 moles of
From the given question, the reactants are said to have equal masses.
Therefore, the sum of reactant masses must be either,
Assuming that,
Then, when
But we assumed only 194.2 g AgNO3 is present; this cannot be correct. Instead of
Therefore, the concentration of ions in original solution,
The concentrations of individual ions are calculated by plugging in the values of moles taking part in the chemical reaction to the volumes of solutions. The concentrations of individual ions in original solution are found to be
d)

Interpretation: The concentration of final solution has to be calculated.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Concentration of solution can be defined in terms of molarity as moles of solute (in grams) to the volume of solution (in litres). The concentration of solution can be calculated by,
Answer to Problem 161MP
The concentration of all ions in final solution are
Explanation of Solution
To calculate the concentration of ions in final solution
The moles of spectator ions (
Therefore, the concentrations of individual ions in final solution are
The concentrations of individual ions in final solution are calculated by plugging in values of their respective moles to the volume of the solution. The molarity of individual ions in final solution are found to be
Want to see more full solutions like this?
Chapter 4 Solutions
Bundle: Chemistry, Loose-Leaf Version, 10th + OWLv2, 4 terms (24 months) Printed Access Card
- How to name hydrocarbonsarrow_forwardPlease do these questions within the SCH4U course please with full steps since I am still unsure how to format my answers! Thank you so much.arrow_forwardWhen two solutions, one of 0.1 M KCl (I) and the other of 0.1 M MCl (II), are brought into contact by a membrane. The cation M cannot cross the membrane. At equilibrium, x moles of K+ will have passed from solution (I) to (II). To maintain the neutrality of the two solutions, x moles of Cl- will also have to pass from I to II. Explain this equality: (0.1 - x)/x = (0.1 + x)/(0.1 - x)arrow_forward
- Calculate the variation in the potential of the Pt/MnO4-, Mn2+ pair with pH, indicating the value of the standard potential. Data: E0 = 1.12.arrow_forwardGiven the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt. Calculate the emf of the cell as a function of pH.arrow_forwardThe decimolar calomel electrode has a potential of 0.3335 V at 25°C compared to the standard hydrogen electrode. If the standard reduction potential of Hg22+ is 0.7973 V and the solubility product of Hg2Cl2 is 1.2x 10-18, find the activity of the chlorine ion at this electrode.Data: R = 8.314 J K-1 mol-1, F = 96485 C mol-1, T = 298.15 K.arrow_forward
- 2. Add the following group of numbers using the correct number of significant figures for the answer. Show work to earn full credit such as rounding off the answer to the correct number of significant figures. Replace the question marks with the calculated answers or write the calculated answers near the question marks. 10916.345 37.40832 5.4043 3.94 + 0.0426 ? (7 significant figures)arrow_forwardThe emf at 25°C of the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt was 612 mV. When solution X was replaced by normal phosphate buffer solution with a pH of 6.86, the emf was 741 mV. Calculate the pH of solution X.arrow_forwardIndicate how to calculate the potential E of the reaction Hg2Cl2(s) + 2e ⇄ 2Hg + 2Cl- as a function of the concentration of Cl- ions. Data: the solubility product of Hg2Cl2.arrow_forward
- How can Beer’s Law be used to determine the concentration in a selected food sample. Provide an in-depth discussion and examples of this.arrow_forwardb) H3C- H3C Me CH 3 I HN Me H+arrow_forwardUsing Luther's rule, determine the reference potentials of the electrodes corresponding to the low stability systems Co³+/Co and Cr²+/Cr from the data in the table. Electrodo ΕΝ Co²+/Co Co3+/Co²+ -0,28 +1,808 Cr³+ / Cr -0,508 Cr3+ / Cr²+ -0,41arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





