Physics
Physics
3rd Edition
ISBN: 9780073512150
Author: Alan Giambattista, Betty Richardson, Robert C. Richardson Dr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 142P

(a)

To determine

Check whether the puck move or not due to 5.0N force in forward direction.

(a)

Expert Solution
Check Mark

Answer to Problem 142P

Puck will not move.

Explanation of Solution

The mass of puck is 2.0kg, coefficient of static friction between the board and puck is 0.35, coefficient of kinetic friction between the board and puck is 0.25, and the applied force is 5.0N.

The puck will move or not depends on whether the applied force is greater than or lesser than that of the frictional force between the puck and the board. The puck will move if the applied force is greater than that of the frictional force.

Write the expression to calculate the frictional force between the puck and the board.

fs,max=μsN

Here, the maximum value of static frictional force between the puck and the board is fs,max, coefficient of static friction between the board and puck is μs, and the normal reaction force on puck is N.

Write the equation for N.

N=mg

Here, the mass of puck is m and the gravitational acceleration of earth is g.

Rewrite the equation for fs,max by substituting the above relation for N.

fs,max=μsmgearth

Conclusion:

Substitute 0.35 for μs, 2.0kg for m, and 9.8m/s2 for g in the above equation to find fs,max.

fs,max=(0.35)(2.0kg)(9.8m/s2)=6.86N

It is found that fs,max is lesser than that of the applied force 5.0N.

Therefore, the puck cannot move with 5.0N force.

(b)

To determine

Check whether the puck move or not due to 7.5N force in forward direction.

(b)

Expert Solution
Check Mark

Answer to Problem 142P

Puck will move.

Explanation of Solution

The mass of puck is 2.0kg, coefficient of static friction between the board and puck is 0.35, coefficient of kinetic friction between the board and puck is 0.25, and the applied force is 5.0N.

The puck will move or not depends on whether the applied force is greater than or lesser than that of the frictional force between the puck and the board. The puck will move if the applied force is greater than that of the frictional force.

Write the condition for the puck to move

Fapplied>fs,max

Here, the applied force is Fapplied.

Conclusion:

Substitute 7.5N for Fapplied and 6.86N for fs,max in the above condition to check whether it is valid or not.

7.5N>6.86N

It is found that Fapplied>fs,max.

Therefore, the puck cannot move with 5.0N force.

(c)

To determine

Check whether the puck move or not due to 7.5N force in forward direction.

(c)

Expert Solution
Check Mark

Answer to Problem 142P

Puck will move.

Explanation of Solution

The mass of puck is 2.0kg, coefficient of static friction between the board and puck is 0.35, coefficient of kinetic friction between the board and puck is 0.25, and the push force is 6.0N.

Write the equation for net force on the puck.

ma=Fpushμkg

Here, the acceleration of puck is a, coefficient of kinetic friction between the board and puck is μk, and the push force is Fpush.

Conclusion:

Substitute 2.0kg for m, 6.0N for Fpush, 0.25 for μk, and 9.8m/s2 for g in the above equation to find a.

(2.0kg)a=6.0N((6.0N)(9.8m/s2))=6.0N58.8N2.0kg=0.6N/m2

Therefore, the puck can move.

(d)

To determine

Whether the acceleration of puck will be same, lesser than, or greater than that of in earth for the same applied force.

(d)

Expert Solution
Check Mark

Answer to Problem 142P

Acceleration of puck will be greater in moon that in earth.

Explanation of Solution

The mass of puck is 2.0kg, coefficient of static friction between the board and puck is 0.35, coefficient of kinetic friction between the board and puck is 0.25, and the applied force is 6.0N.

Write the equation for net force on the puck.

ma=Fpushμkg

Rewrite the above relation in terms of a.

a=Fpushmμkg

From the above equation it can be seen that the acceleration of puck depends on the gravitational acceleration exerted on puck.

Rewrite the above equation for puck in moon.

amoon=Fpushmμkgmoon

Here, the acceleration of puck in moon is amoon and the gravitational acceleration of moon is gmoon.

The value of gmoon is lesser than that of g.This means that Fpushmμkgmoon is greater than that of Fpushmμkg.It means that the fractional force on puck in moon is less than that in earth. Thus, amoon will be greater than that of a.

Conclusion:

Therefore, the acceleration of puck will be greater in moon that in earth.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.

Chapter 4 Solutions

Physics

Ch. 4.5 - CHECKPOINT 4.5 If you climb Mt. McKinley, what...Ch. 4.5 - Practice Problem 4.7 Figs on the Moon What would...Ch. 4.6 - CHECKPOINT 4.6 Your laptop is resting on the...Ch. 4.6 - Practice Problem 4.8 Chest at Rest Suppose the...Ch. 4.6 - Practice Problem 4.9 Passing a Truck A car is...Ch. 4.6 - Practice Problem 4.10 Smoothing the Infield...Ch. 4.7 - Practice Problem 4.11 Tightrope Practice Jorge...Ch. 4.7 - Practice Problem 4.12 System of Ropes, Pulleys,...Ch. 4.8 - Practice Problem 4.13 The Continuing Story … How...Ch. 4.8 - Practice Problem 4.14 Coupling Force Between First...Ch. 4.8 - Practice Problem 4.15 Another Check Using the...Ch. 4.8 - Practice Problem 4.16 Hauling the Crate with a...Ch. 4.8 - Practice Problem 4.17 Engine Thrust What is the...Ch. 4.8 - Prob. 4.18PPCh. 4.8 - Prob. 4.8CPCh. 4.10 - Practice Problem 4.19 Elevator Descending What is...Ch. 4.10 - Prob. 4.10CPCh. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Prob. 9CQCh. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - 15. A heavy ball hangs from a string attached to a...Ch. 4 - 16. An SUV collides with a Mini Cooper...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - 24. Pulleys and inclined planes are examples of...Ch. 4 - Prob. 25CQCh. 4 - Prob. 26CQCh. 4 - Prob. 27CQCh. 4 - Prob. 28CQCh. 4 - Prob. 29CQCh. 4 - Prob. 30CQCh. 4 - Prob. 31CQCh. 4 - Prob. 32CQCh. 4 - Prob. 1MCQCh. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 6MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 8MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 14MCQCh. 4 - Prob. 15MCQCh. 4 - Prob. 16MCQCh. 4 - Prob. 17MCQCh. 4 - Prob. 18MCQCh. 4 - Prob. 19MCQCh. 4 - Prob. 20MCQCh. 4 - Prob. 21MCQCh. 4 - Prob. 22MCQCh. 4 - Prob. 23MCQCh. 4 - Prob. 24MCQCh. 4 - Prob. 25MCQCh. 4 - Prob. 26MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - 16. A truck driving on a level highway is acted on...Ch. 4 - 17. A tennis ball (mass 57.0 g) moves toward the...Ch. 4 - 18. A red-tailed hawk that weighs 8 N is gliding...Ch. 4 - 19. An 80 N crate of apples sits at rest on the...Ch. 4 - 20. Forces of magnitudes 2000 N and 3000 N act on...Ch. 4 - 21. A person stands on the ball of one foot. The...Ch. 4 - 22. A sailboat, tied to a mooring with a line,...Ch. 4 - 23. A hummingbird is hovering motionless beside a...Ch. 4 - 24. You are pulling a suitcase through the airport...Ch. 4 - Prob. 25PCh. 4 - 26. A man is lazily floating on an air mattress in...Ch. 4 - 27. What is the acceleration of an automobile of...Ch. 4 - 28. A bag of potatoes with weight 39.2 N is...Ch. 4 - 29. A large wooden crate is pushed along a...Ch. 4 - 30. A hanging plant is suspended by a cord from a...Ch. 4 - 31. A bike is hanging from a hook in a garage....Ch. 4 - 32. A woman who weighs 600 N sits on a chair with...Ch. 4 - 33. A fisherman is holding a fishing rod with a...Ch. 4 - 34. In Problem 33, identify the forces acting on...Ch. 4 - Problems 35–37. A skydiver, who weighs 650 N, is...Ch. 4 - 36. (a) Identify the forces acting on the...Ch. 4 - 37. Consider the skydiver and parachute to be a...Ch. 4 - 38. Margie, who weighs 543 N, is standing on a...Ch. 4 - 39. (a) Calculate your weight in newtons. (b) What...Ch. 4 - 40. A young South African girl has a mass of 40.0...Ch. 4 - 41. A man weighs 0.80 kN on Earth. What is his...Ch. 4 - 42. The peak force on a runner’s foot during a...Ch. 4 - 43. In a binary star system, two stars orbit their...Ch. 4 - 44. An astronaut stands at a position on the Moon...Ch. 4 - 45. Find the ratio of the Earth’s gravitational...Ch. 4 - 46. How far above the surface of the Earth does an...Ch. 4 - 47. Find and compare the weight of a 65 kg man on...Ch. 4 - 48. Find the altitudes above the Earth’s surface...Ch. 4 - 49. During a balloon ascension, wearing an oxygen...Ch. 4 - 50. At what altitude above the Earth’s surface...Ch. 4 - 51. (a) What is the magnitude of the gravitational...Ch. 4 - 52. What is the approximate magnitude of the...Ch. 4 - 53. In free fall, we assume the acceleration to be...Ch. 4 - 54. A solar sailplane is going from Earth to Mars....Ch. 4 - Problems 55–57. Assume the elevator is supported...Ch. 4 - 56. While an elevator of mass 2530 kg moves...Ch. 4 - 57. While an elevator of mass 832 kg moves...Ch. 4 - 58. The vertical component of the acceleration of...Ch. 4 - 59. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - 60. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - Prob. 61PCh. 4 - 62. A binary star consists of two stars of masses...Ch. 4 - 63. Mechanical advantage is the ratio of the force...Ch. 4 - 64. A book rests on the surface of the table....Ch. 4 - 65. A crate of artichokes is on a ramp that is...Ch. 4 - Prob. 66PCh. 4 - 67. An 85 kg skier is sliding down a ski slope at...Ch. 4 - 68. A book that weighs 10 N is at rest in six...Ch. 4 - 69. Strategy While the crate is remaining at rest,...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - 73. (a) In Example 4.10, if the movers stop...Ch. 4 - 74. A 3.0 kg block is at rest on a horizontal...Ch. 4 - 75. A horse is trotting along pulling a sleigh...Ch. 4 - 76. Before hanging new William Morris wallpaper in...Ch. 4 - 77. A conveyor belt carries apples up an incline...Ch. 4 - 78. A box sits on a horizontal wooden ramp. The...Ch. 4 - 79. In a playground, two slides have different...Ch. 4 - 80. A sailboat is tied to a mooring with a...Ch. 4 - 81. A towline is attached between a car and a...Ch. 4 - 82. In Example 4.14, find the tension in the...Ch. 4 - 83. A 200.0 N sign is suspended from a horizontal...Ch. 4 - 84. Strategy Use Newton’s first law of motion. The...Ch. 4 - 85. A pulley is attached to the ceiling. Spring...Ch. 4 - 86. Spring scale A is attached to the floor and a...Ch. 4 - 87. Two springs are connected in series so that...Ch. 4 - 88. A pulley is hung from the ceiling by a rope. A...Ch. 4 - 89. A 2.0 kg ball tied to a string fixed to the...Ch. 4 - Prob. 90PCh. 4 - 91. A 45 N lithograph is supported by two wires....Ch. 4 - 92. A crow perches on a clothesline midway between...Ch. 4 - 93. The drawing shows a wire attached to two back...Ch. 4 - 94. A cord cut into two equal sections, with a...Ch. 4 - 95. Two blocks, masses m1 and m2, are connected by...Ch. 4 - 96. The coefficient of static friction between a...Ch. 4 - 97. A 2.0 kg toy locomotive is pulling a 1.0 kg...Ch. 4 - 98. An engine pulls a train of 20 freight cars,...Ch. 4 - Prob. 99PCh. 4 - 100. A rope is attached from a truck to a 1400 kg...Ch. 4 - 101. An accelerometer—a device to measure...Ch. 4 - 102. A box full of books rests on a wooden floor....Ch. 4 - 103. A helicopter is lifting two crates...Ch. 4 - 104. A person stands on a bathroom scale in an...Ch. 4 - 105. Oliver has a mass of 76.2 kg. He is riding in...Ch. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - 110. Yolanda, whose mass is 64.2 kg, is riding in...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - 134. The tallest spot on Earth is Mt. Everest,...Ch. 4 - Prob. 135PCh. 4 - Prob. 136PCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - Prob. 143PCh. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - Prob. 148PCh. 4 - Prob. 149PCh. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - Prob. 153PCh. 4 - Prob. 154PCh. 4 - 155. You want to lift a heavy box with a mass of...Ch. 4 - 156. A crate of oranges weighing 180 N rests on a...Ch. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - 159. A helicopter of mass M is lowering a truck of...Ch. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 163PCh. 4 - 164. A person is doing leg lifts with 3.00 kg...Ch. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 167PCh. 4 - Prob. 168PCh. 4 - Prob. 169PCh. 4 - Prob. 170PCh. 4 - Prob. 171PCh. 4 - Prob. 172PCh. 4 - Prob. 173PCh. 4 - Prob. 174PCh. 4 - Prob. 175PCh. 4 - Prob. 176PCh. 4 - Prob. 177PCh. 4 - Prob. 178PCh. 4 - Prob. 179P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY