Physics
Physics
5th Edition
ISBN: 9781260487008
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 122P

(a)

To determine

The acceleration of each blocks and tension in the cord.

(a)

Expert Solution
Check Mark

Answer to Problem 122P

The magnitude of acceleration of each blocks and tension in the cord is respectively (m2μkm1m1+m2)g and (μk+1)m1m2m1+m2g.

Explanation of Solution

Case 1 (mass m1).

Write the expression for the equilibrium condition in y-direction (Vertical).

N=m1g (I)

Here, N is the normal force on the mass m1 and g is the acceleration due to gravity.

Write the expression for the equilibrium condition in x-direction (Horizontal).

Tμkm1g=m1ax . (II)

Here, ax is the acceleration of mass m1 in the horizontal direction and T is the tension in the cord.

Rewrite the above equation in terms of ax.

ax=Tm1μkg . (III)

Case 2 (mass m2).

Write the expression for the equilibrium condition in y-direction (Vertical).

Tm2g=m2ay (IV)

Here, ay is the acceleration of mass m2.

Write the above expression in terms of ay.

ay=Tm2g . (V)

Since both acceleration is equal in magnitude and opposite in direction.

Write the expression for the relation between acceleration of two blocks.

ax=ay (VI)

Substitute (III) and (V) in the above equation to calculate T.

Tm1μkg=Tm2+gT(1m1+1m2)=g(μk+1)T(m1+m2m1m2)=g(μk+1)T=(μk+1)m1m2m1+m2g (VII)

Substitute (VI) in (v) to calculate the acceleration ay.

ay=1m2((μk+1)m1m2m1+m2g)g=(μk+1)m1m1+m2gg=g(μkm1+m1m1+m21)=μkm1m2m1+m2g

Substitute the above expression in (VI) to calculate ax.

ax=(μkm1m2m1+m2g)ax=(m2μkm1m1+m2)g . (VIII)

Conclusion:

Therefore, the magnitude of acceleration of each blocks and tension in the cord is respectively (m2μkm1m1+m2)g and (μk+1)m1m2m1+m2g.

(b)

To determine

The magnitude of acceleration and tension for the cases m1<<m2, m1>>m2 and m1=m2.

(b)

Expert Solution
Check Mark

Answer to Problem 122P

The magnitude of acceleration and tension for the cases m1<<m2, m1>>m2 and m1=m2 is respectively is zero or free fall and g, m2g and 0, (μk+1)m2g2 and ((1μk)2)g.

Explanation of Solution

Consider the equation (VII) and (VIII).

Case 1 m1<<m2.

T=(μk+1)m1m2m1+m2g=(μk+1)m1g(1+m1m2)(μk+1)m1g

Since μk is too small, μk could possible to neglect.

Thus, the tension in the cord is m1g and is negligible might be considered as free-fall.

ax=(m2μkm1m1+m2)g=(m2m1μk(1+m2m1))g

Since 1+m2m1 is m2m1 and μk is too small, μk could possible to neglect.

Thus, the acceleration of the block is g.

Case 2 m1>>m2.

T=(μk+1)m1m2m1+m2g=(μk+1)m2g(1+m2m1)(μk+1)m2g

Since μk is too small, μk could possible to neglect.

Thus, the tension in the cord is m2g.

ax=(m2μkm1m1+m2)g=(m2m1μk(1+m2m1))g

Since 1+m2m1 is m2m1 and μk is too small, μk could possible to neglect.

Thus, the acceleration of the block is 0.

Case 3 m1=m2.

Substitute m1=m2 in (VII) and (VIII) to calculate T and ax.

T=(μk+1)m2m2m2+m2g=(μk+1)m22g(2m2)=(μk+1)m2g2

ax=(m2μkm2m2+m2)g=(m2(1μk)2m2)g=((1μk)2)g

Conclusion:

Therefore, the magnitude of acceleration and tension for the cases m1<<m2, m1>>m2 and m1=m2 is respectively is zero or free fall and g, m2g and 0, (μk+1)m2g2 and ((1μk)2)g.

(c)

To determine

The magnitude of m2 and tension in the cord.

(c)

Expert Solution
Check Mark

Answer to Problem 122P

The magnitude of m2 and tension in the cord is respectively μkm1 and m2g.

Explanation of Solution

Consider the equation (VII) and (VIII).

In the case of constant velocity acceleration should be zero.

Equate (VIII) to zero to calculate m2.

(m2μkm1m1+m2)g=0m2μkm1=0m2=μkm1

Substitute the above equation for m2 in (VII) to calculate T.

T=(μk+1)m1m2m1+(μkm1)g=(μk+1)m1m2m1(1+μk)g=m2g

Conclusion:

Therefore, the magnitude of m2 and tension in the cord is respectively μkm1 and m2g.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V?   2. A conductor draws a current of 100 A and a resistance of 5 Ω.  What is thevoltageacross the conductor?   3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA?   4. An x-ray imaging system that draws a current of 90 A is supplied with 220V.  What is the power consumed?   5. An x-ray is produced using 800 mA and 100 kV.  What is the powerconsumed in kilowatts?
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…

Chapter 4 Solutions

Physics

Ch. 4.5 - CHECKPOINT 4.5 If you climb Mt. McKinley, what...Ch. 4.5 - Practice Problem 4.7 Figs on the Moon What would...Ch. 4.6 - CHECKPOINT 4.6 Your laptop is resting on the...Ch. 4.6 - Practice Problem 4.8 Chest at Rest Suppose the...Ch. 4.6 - Practice Problem 4.9 Passing a Truck A car is...Ch. 4.6 - Practice Problem 4.10 Smoothing the Infield...Ch. 4.7 - Practice Problem 4.11 Tightrope Practice Jorge...Ch. 4.7 - Practice Problem 4.12 System of Ropes, Pulleys,...Ch. 4.8 - Practice Problem 4.13 The Continuing Story … How...Ch. 4.8 - Practice Problem 4.14 Coupling Force Between First...Ch. 4.8 - Practice Problem 4.15 Another Check Using the...Ch. 4.8 - Practice Problem 4.16 Hauling the Crate with a...Ch. 4.8 - Practice Problem 4.17 Engine Thrust What is the...Ch. 4.8 - Prob. 4.18PPCh. 4.8 - Prob. 4.8CPCh. 4.10 - Practice Problem 4.19 Elevator Descending What is...Ch. 4.10 - Prob. 4.10CPCh. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Prob. 9CQCh. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - 15. A heavy ball hangs from a string attached to a...Ch. 4 - 16. An SUV collides with a Mini Cooper...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - 24. Pulleys and inclined planes are examples of...Ch. 4 - Prob. 25CQCh. 4 - Prob. 26CQCh. 4 - Prob. 27CQCh. 4 - Prob. 28CQCh. 4 - Prob. 29CQCh. 4 - Prob. 30CQCh. 4 - Prob. 31CQCh. 4 - Prob. 1MCQCh. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 6MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 8MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 14MCQCh. 4 - Prob. 15MCQCh. 4 - Prob. 16MCQCh. 4 - Prob. 17MCQCh. 4 - Prob. 18MCQCh. 4 - Prob. 19MCQCh. 4 - Prob. 20MCQCh. 4 - Prob. 21MCQCh. 4 - Prob. 22MCQCh. 4 - Prob. 23MCQCh. 4 - Prob. 24MCQCh. 4 - Prob. 25MCQCh. 4 - Prob. 26MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - 16. A truck driving on a level highway is acted on...Ch. 4 - 17. A tennis ball (mass 57.0 g) moves toward the...Ch. 4 - 18. A red-tailed hawk that weighs 8 N is gliding...Ch. 4 - 19. An 80 N crate of apples sits at rest on the...Ch. 4 - 20. Forces of magnitudes 2000 N and 3000 N act on...Ch. 4 - 21. A person stands on the ball of one foot. The...Ch. 4 - Prob. 21PCh. 4 - 22. A sailboat, tied to a mooring with a line,...Ch. 4 - 23. A hummingbird is hovering motionless beside a...Ch. 4 - 24. You are pulling a suitcase through the airport...Ch. 4 - Prob. 30PCh. 4 - 26. A man is lazily floating on an air mattress in...Ch. 4 - 27. What is the acceleration of an automobile of...Ch. 4 - 29. A large wooden crate is pushed along a...Ch. 4 - 28. A bag of potatoes with weight 39.2 N is...Ch. 4 - 30. A hanging plant is suspended by a cord from a...Ch. 4 - 31. A bike is hanging from a hook in a garage....Ch. 4 - 32. A woman who weighs 600 N sits on a chair with...Ch. 4 - 33. A fisherman is holding a fishing rod with a...Ch. 4 - Prob. 35PCh. 4 - Problems 35–37. A skydiver, who weighs 650 N, is...Ch. 4 - 36. (a) Identify the forces acting on the...Ch. 4 - 37. Consider the skydiver and parachute to be a...Ch. 4 - 38. Margie, who weighs 543 N, is standing on a...Ch. 4 - 39. (a) Calculate your weight in newtons. (b) What...Ch. 4 - 40. A young South African girl has a mass of 40.0...Ch. 4 - 41. A man weighs 0.80 kN on Earth. What is his...Ch. 4 - 42. The peak force on a runner’s foot during a...Ch. 4 - 43. In a binary star system, two stars orbit their...Ch. 4 - 44. An astronaut stands at a position on the Moon...Ch. 4 - 45. Find the ratio of the Earth’s gravitational...Ch. 4 - 46. How far above the surface of the Earth does an...Ch. 4 - 47. Find and compare the weight of a 65 kg man on...Ch. 4 - 48. Find the altitudes above the Earth’s surface...Ch. 4 - 49. During a balloon ascension, wearing an oxygen...Ch. 4 - 50. At what altitude above the Earth’s surface...Ch. 4 - 51. (a) What is the magnitude of the gravitational...Ch. 4 - 52. What is the approximate magnitude of the...Ch. 4 - 53. In free fall, we assume the acceleration to be...Ch. 4 - 54. A solar sailplane is going from Earth to Mars....Ch. 4 - Problems 55–57. Assume the elevator is supported...Ch. 4 - 56. While an elevator of mass 2530 kg moves...Ch. 4 - 57. While an elevator of mass 832 kg moves...Ch. 4 - 58. The vertical component of the acceleration of...Ch. 4 - Prob. 58PCh. 4 - 59. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - 60. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - Prob. 63PCh. 4 - 62. A binary star consists of two stars of masses...Ch. 4 - Prob. 65PCh. 4 - 65. A crate of artichokes is on a ramp that is...Ch. 4 - Prob. 66PCh. 4 - Prob. 68PCh. 4 - 67. An 85 kg skier is sliding down a ski slope at...Ch. 4 - 68. A book that weighs 10 N is at rest in six...Ch. 4 - 69. Strategy While the crate is remaining at rest,...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - 73. (a) In Example 4.10, if the movers stop...Ch. 4 - 74. A 3.0 kg block is at rest on a horizontal...Ch. 4 - 75. A horse is trotting along pulling a sleigh...Ch. 4 - 76. Before hanging new William Morris wallpaper in...Ch. 4 - 78. A box sits on a horizontal wooden ramp. The...Ch. 4 - 79. In a playground, two slides have different...Ch. 4 - 81. A towline is attached between a car and a...Ch. 4 - 82. In Example 4.14, find the tension in the...Ch. 4 - 83. A 200.0 N sign is suspended from a horizontal...Ch. 4 - 84. Strategy Use Newton’s first law of motion. The...Ch. 4 - 85. A pulley is attached to the ceiling. Spring...Ch. 4 - 86. Spring scale A is attached to the floor and a...Ch. 4 - 87. Two springs are connected in series so that...Ch. 4 - 88. A pulley is hung from the ceiling by a rope. A...Ch. 4 - 89. A 2.0 kg ball tied to a string fixed to the...Ch. 4 - Prob. 90PCh. 4 - 91. A 45 N lithograph is supported by two wires....Ch. 4 - 92. A crow perches on a clothesline midway between...Ch. 4 - 93. The drawing shows a wire attached to two back...Ch. 4 - Prob. 94PCh. 4 - 95. Two blocks, masses m1 and m2, are connected by...Ch. 4 - 96. The coefficient of static friction between a...Ch. 4 - 97. A 2.0 kg toy locomotive is pulling a 1.0 kg...Ch. 4 - 98. An engine pulls a train of 20 freight cars,...Ch. 4 - Prob. 99PCh. 4 - A horizontal rope is attached from a truck to a...Ch. 4 - 101. An accelerometer—a device to measure...Ch. 4 - 102. A box full of books rests on a wooden floor....Ch. 4 - 103. A helicopter is lifting two crates...Ch. 4 - 104. A person stands on a bathroom scale in an...Ch. 4 - 105. Oliver has a mass of 76.2 kg. He is riding in...Ch. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - 110. Yolanda, whose mass is 64.2 kg, is riding in...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 32CQCh. 4 - Prob. 33CQCh. 4 - Prob. 34CQCh. 4 - Prob. 35CQCh. 4 - Prob. 36CQCh. 4 - Prob. 114PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 113PCh. 4 - Prob. 3CQCh. 4 - Prob. 115PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - 134. The tallest spot on Earth is Mt. Everest,...Ch. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - Prob. 136PCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - Prob. 143PCh. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - Prob. 148PCh. 4 - 155. You want to lift a heavy box with a mass of...Ch. 4 - 156. A crate of oranges weighing 180 N rests on a...Ch. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - 159. A helicopter of mass M is lowering a truck of...Ch. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - 164. A person is doing leg lifts with 3.00 kg...Ch. 4 - Prob. 159PCh. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 164PCh. 4 - Prob. 163PCh. 4 - Prob. 170PCh. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 171PCh. 4 - Prob. 167PCh. 4 - Prob. 172PCh. 4 - Prob. 173PCh. 4 - You are designing a high-speed elevator for a new...Ch. 4 - Prob. 175PCh. 4 - Prob. 176PCh. 4 - Prob. 168PCh. 4 - Prob. 169P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY