
(a)
Total travel time of the pulse as measured by observers in the S frame.
(a)

Answer to Problem 86AP
The total travel time of the pulse as measured by observers in the S frame is
Explanation of Solution
Let the distance travelled by the light from spacecraft to the mirror be equal to
Write the expression for the distance that the spacecraft travelled forward.
Here,
The spacecraft is travelling towards the mirror. After the reflection of pulse from the mirror it travels back to the approaching spacecraft.
Write the expression for the distance travelled by the pulse after reflection from the mirror.
Here,
Write the expression for the total distance travelled by the light before and after reflection.
Here,
Use expressions (I) and (II) in (III) to find
The light travels at speed of
Write the expression for the total distance travelled by light.
Here,
Left hand side of equations (IV) and (V) are same. Therefore equate the right hand side of these equations.
Solve equation (VI) for
Conclusion:
Therefore, the total travel time of the pulse as measured by observers in the S frame is
(b)
The total travel time of the pulse as measured by observers in the spacecraft.
(b)

Answer to Problem 86AP
The total travel time of the pulse as measured by observers in the spacecraft is
Explanation of Solution
The observer in the spacecraft moving towards the mirror will experience a contraction in length for the distance between the mirror and the spacecraft.
Write the expression for the contracted distance between the mirror and the spacecraft.
Here,
Here both mirror and pulse is moving. The speed of travel of light pulse is
Write the expression for the distance travelled by pulse towards the mirror measured by the observer in spacecraft.
Here,
Write the expression for the distance travelled by mirror towards the spacecraft measured by the observer in spacecraft.
Here,
Write the expression for the total distance travelled by light and mirror.
Here,
Use expressions (IX) and (X) in (XI).
Solve expression (XII) to find
Write the expression for the distance between the mirror and spacecraft when the light strikes mirror.
Here,
The same distance
Write the expression for the distance travelled by light after reflection from the mirror as observed by the observer in spacecraft.
Equate (XV) and (XIV) and solve for
Write the expression to find the total travel time of light.
Here,
Use expressions (XVI) and (XIII) in (XVII).
Use expression (XIII) in (XVIII).
Use expression (VIII) in (XIX).
Conclusion:
Therefore, the total travel time of the pulse as measured by observers in the spacecraft is
Want to see more full solutions like this?
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





