(a)
The radial velocity components of both batches of raindrops.
(a)
Answer to Problem 69AP
The radial velocity components of first batch of raindrops is
Explanation of Solution
The first batch of raindrops are moving towards the radio station.
Here there is relative motion between the raindrop and the station. So apply Doppler’s equation to the situation.
Write the expression for the enhanced frequency of radio waves received by the first batch of raindrops.
Here,
The radio waves transmitted towards the first batch of raindrop gets reflected towards the radio station. There is an upward Doppler shift in the frequency of the reflected wave.
Write the expression for the enhanced frequency of the reflected radio waves from first batch of rain drops.
Here,
Use expression (I) in (II).
Due to the relative motion of rain drops and the pulse,
Write the expression to find
Here,
Use expression (IV) in (III).
Solve expression (V) for
Simplify expression (VI) to find
Take terms containing
Similarly repeat the calculations for the second batch of raindrops also. Here the frequency is enhanced in down ward direction. So replace
Conclusion:
Substitute
Substitute
Therefore, the radial velocity components of first batch of raindrops is
(b)
Angular speed of rotation of rotation of the rain drops.
(b)
Answer to Problem 69AP
The angular speed of rotation of the rain drops is
Explanation of Solution
The first batch of rain drops is at bearing of
The time taken by the radio wave to travel from station to rain and come back is
Write the expression for one way distance travelled by the radio waves.
Here,
Write the expression for the diameter of the vortex where the rain drops are whirling.
Here,
Write the expression for the angular sped of rotation of rain drop about the vortex in terms of the diameter.
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the angular speed of rotation of the rain drops is
Want to see more full solutions like this?
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning