Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 55PQ
To determine
The satellite’s kinetic energy using
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.02 × 104 m/s. The mass of the planet is M = 5.9 × 1024 kg. The mass of the satellite is m = 5.7 × 103 kg.
a)Calculate the value of PE in joules.
b)Enter an expression for the total energy E of the satellite in terms of m and v.
c) Calculate the value of the total energy E in joules.
(D Page view A Read aloud
V Draw
y Highlight
Erase
A mass of 5 kg is 100m above a given datum where local g = 9.75 meters per second square.
a.Find the potential energy with respect to the datum.
Choices for a:
4978 J
4976 J
4877 J
4875 J
b.Find the weight in Newtons of the 5 kg mass.
Choices for b:
49.50 N
48.77 N
48.75 N
49.20 N
show complete solution, cancellation and proper symbol:)
Chapter 39 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 39.1 - Which of the following are (approximately)...Ch. 39.2 - Suppose the primed and laboratory observers want...Ch. 39.7 - Prob. 39.3CECh. 39.10 - Prob. 39.4CECh. 39.12 - Prob. 39.5CECh. 39 - Prob. 1PQCh. 39 - Prob. 2PQCh. 39 - Prob. 3PQCh. 39 - In an airport terminal, there are two fast-moving...Ch. 39 - Prob. 5PQ
Ch. 39 - Prob. 6PQCh. 39 - Prob. 7PQCh. 39 - Prob. 8PQCh. 39 - Prob. 9PQCh. 39 - Prob. 10PQCh. 39 - Prob. 11PQCh. 39 - Prob. 12PQCh. 39 - Prob. 13PQCh. 39 - Prob. 14PQCh. 39 - Prob. 15PQCh. 39 - Prob. 16PQCh. 39 - Prob. 17PQCh. 39 - Prob. 18PQCh. 39 - Prob. 19PQCh. 39 - Prob. 20PQCh. 39 - Prob. 21PQCh. 39 - Prob. 22PQCh. 39 - Prob. 23PQCh. 39 - A starship is 1025 ly from the Earth when measured...Ch. 39 - A starship is 1025 ly from the Earth when measured...Ch. 39 - Prob. 26PQCh. 39 - Prob. 27PQCh. 39 - Prob. 28PQCh. 39 - Prob. 29PQCh. 39 - Prob. 30PQCh. 39 - Prob. 31PQCh. 39 - Prob. 32PQCh. 39 - Prob. 33PQCh. 39 - Prob. 34PQCh. 39 - Prob. 35PQCh. 39 - Prob. 36PQCh. 39 - Prob. 37PQCh. 39 - Prob. 38PQCh. 39 - As measured in a laboratory reference frame, a...Ch. 39 - Prob. 40PQCh. 39 - Prob. 41PQCh. 39 - Prob. 42PQCh. 39 - Prob. 43PQCh. 39 - Prob. 44PQCh. 39 - Prob. 45PQCh. 39 - Prob. 46PQCh. 39 - Prob. 47PQCh. 39 - Prob. 48PQCh. 39 - Prob. 49PQCh. 39 - Prob. 50PQCh. 39 - Prob. 51PQCh. 39 - Prob. 52PQCh. 39 - Prob. 53PQCh. 39 - Prob. 54PQCh. 39 - Prob. 55PQCh. 39 - Prob. 56PQCh. 39 - Consider an electron moving with speed 0.980c. a....Ch. 39 - Prob. 58PQCh. 39 - Prob. 59PQCh. 39 - Prob. 60PQCh. 39 - Prob. 61PQCh. 39 - Prob. 62PQCh. 39 - Prob. 63PQCh. 39 - Prob. 64PQCh. 39 - Prob. 65PQCh. 39 - Prob. 66PQCh. 39 - Prob. 67PQCh. 39 - Prob. 68PQCh. 39 - Prob. 69PQCh. 39 - Prob. 70PQCh. 39 - Joe and Moe are twins. In the laboratory frame at...Ch. 39 - Prob. 72PQCh. 39 - Prob. 73PQCh. 39 - Prob. 74PQCh. 39 - Prob. 75PQCh. 39 - Prob. 76PQCh. 39 - Prob. 77PQCh. 39 - In December 2012, researchers announced the...Ch. 39 - Prob. 79PQCh. 39 - Prob. 80PQCh. 39 - How much work is required to increase the speed of...Ch. 39 - Prob. 82PQCh. 39 - Prob. 83PQCh. 39 - Prob. 84PQCh. 39 - Prob. 85PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardRank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forward(a) What is the change in energy of a 1000-kg payload taken from rest at the surface of Earth and placed at rest on the surface of the Moon? (b) What would be the answer if the payload were taken from the Moon’s surface to Earth? Is this a reasonable calculation of the energy needed to move a payload back and forth?arrow_forward
- (a) Find the value of for the following situation. An astronaut measures the length of his spaceship to be 100 m, while an observer measures it to be 25.0 m. (b) What is the of the spaceship relative to Earth?arrow_forwardSpace debris left from old satellites and their launchers is becoming a hazard to other satellites. (a) Calculate the speed of a satellite in an orbit 900 km above Earth’s surface. (b) Suppose a loose rivet is in an orbit of the same radius that intersects the satellite’s orbit at an angle of 90 . What is the velocity of the rivet relative to the satellite just before striking it? (c) If its mass is 0.500 g, and it comes to rest inside the satellite, how much energy in joules is generated by the collision? (Assume the satellite’s velocity does not change appreciably, because it mass is much greater than the rivets’s.)arrow_forwardA massive black hole is believed to exist at the center of our galaxy (and most other spiral galaxies). Since the 1990s, astronomers have been tracking the motions of several dozen stars in rapid motion around the center. Their motions give a clue to the size of this black hole. a. One of these stars is believed to be in an approximately circular orbit with a radius of about 1.50 103 AU and a period of approximately 30 yr. Use these numbers to determine the mass of the black hole around which this star is orbiting, b. What is the speed of this star, and how does it compare with the speed of the Earth in its orbit? How does it compare with the speed of light?arrow_forward
- The class I'm taking is physics for scientists and engineers! I am completely stuck. Need help. I have attached the problem. Please view both attachments before answering. Please write step-by-step solution so I can fully understand.arrow_forwardThe kinetic energy (T) of an object with mass m traveling at a speed v is defined as T = \frac{1}{2}mv^2T=21mv2. What is the kinetic energy (in J) of an object of mass 41 g traveling a velocity of 37 miles per hour? (1 mile = 1.609 km) Round your answer to the tenths (0.1) place.arrow_forward3. a. Calculate the escape velocity of an object leaving a black hole with mass equal to 20 times the Sun's mass at a distance equal to the Earth's orbit (r = 1.5x 10¹¹ m) away from the singularity (the location of the black hole's center). Express your answer as a fraction of the speed of light c. Even though black holes have all of their mass concentrated at a single point in spacetime (called the singularity), the size of a black hole is often described using a distance called the Schwarzschild radius. This distance, r, is the distance at which the escape velocity is equal to the speed of light, c. Once an object or a light beam gets closer to the black hole singularity than the Schwarzchild radius, it cannot escape, because nothing can travel faster than c. b. Find the Schwarzchild radius of the 20 solar mass black hole.arrow_forward
- There exista a spherical planet with a mass of M and a radius of R. How much energy is required to take a rocket of a mass m from rest on the surface of the planet to a circular orbit a height h above the surface?Find using the Energy Difference Ef -Ei where Ef is the energy in orbit and Ei is the energy at rest on the surface. h is not smallarrow_forwardA 200.0 kg rocket is launched directly upward from Earth at 9.00 km/s (rE = 6.38 x 10^6 m,mE = 5.98 x 10^24 kg, G = 6.67 x 10^-11)a) What altitude above Earth’s surface does the rocket reach? b) What is the binding energy at that altitude?arrow_forwardAt a distance of 6.00 x 102 ly, Kepler-22b is the nearest habitable planet found orbiting another star as of 2012. What would the speed of a spacecraft traveling to this planet have to be so that the distance to the star is 163 ly in the reference frame of the people on the spacecraft? Need Help? Readarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY