University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.88PP
To determine
How does the wavelength of a helium ion compare to that of an electron accelerated through the same potential difference from the following options:
(a) The helium ion has a longer wavelength, because it has greater mass.
(b) The helium ion has a shorter wavelength, because it has greater mass.
(c) The wavelengths are the same, because the kinetic energy is same.
(d) The wavelengths are the same, because the electric energy is same.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A recent study found that electrons that have energies between 3.45 eV and 20.5 eV can cause breaks in a DNA molecule even
though they do not ionize the molecule. If a single photon were to transfer its energy to a single electron, what range of light
wavelengths could cause DNA breaks?
minimum wavelength:
radio
In which part of the electromagnetic spectrum does this light lie?
O ultraviolet
infrared
nm
gamma ray
maximum wavelength:
nm
Asap plzzzzz
2. Light of frequency 7.40 × 10¹4 Hz ejects electrons from surface (A) with a maximum kinetic energy that is
-19
1.20 x 107 J greater than the maximum kinetic energy of electrons ejected from surface B. Calculate the difference in
work function for these two surfaces.
J
×60 S
ssf60 ssfo
SS
€60 ssf603
ssf60 ssf
F60 ss
f60 ssf60 teng
Chapter 39 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light of frequency 9.6 x 1014 Hz is incident on a metal surface. The stopping potential for this metal at this frequency is 2.2 V. How much work is required for an electron to escape the surface of this metal? O 3.5 × 10-19 J O 1.6 × 10-19 J O 2.2 × 10:1⁹ J O 3.2 × 10-19 J O 2.8 x 10-19 Jarrow_forwardPhotons of a certain ultraviolet light have an energy of 6.96 x 109 J. (a) What is the frequency of this UV light? Hz (b) Use A = c/f to calculate its wavelength in nanometers (nm). nm Need Help? Read Itarrow_forward7) White light has wavelengths that range from 380 nm to 750 nm. This light strikes a metal that has a work function of 2.28 eV. (a) What is the maximum kinetic energy (in joules) of the electrons that are emitted from the metal? (b) For what wavelengths will no electrons be emitted? range ofarrow_forward
- How much more energy does a 33 nm photon have than a 8670 nm photon? Does the 33 nm photon move at a greater speed than the 8670 nm photon? Which photon has a higher frequency?arrow_forwardA) Astronomers measure the peak wavelength of a nearby star to be 410 nm. What is the star's temperature? B) How much energy does a single photon of light have at this wavelength? C) An electron bound in an unknown metal requires 1.45E-19 ] of energy under the photoelectric effect to become free of the metal. How much kinetic energy would it have if struck by the photon froft part (b)? D) What is the final speed of the elctron from part (c)?arrow_forwardA 4.15-volt battery is connected across a parallel-plate capacitor. Illuminating the plateswith ultraviolet light causes electrons to be emitted from the plates with a speed of 1.76 ×10^6 m/s. (a) Suppose electrons are emitted near the center of the negative plate and travelperpendicular to that plate toward the opposite plate. Find the speed of the electrons whenthey reach the positive plate. (b) Suppose instead that electrons are emitted perpendicularto the positive plate. Find their speed when they reach the negative platearrow_forward
- Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don't we simply use short-wavelength electromagnetic waves? There's a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let's compare the energy of a photon and an electron that can provide the same resolution. For the electron with a de broglie wavelength of 3.5 nm, what is the kinetic energy (in eV)?arrow_forwardSuppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.a. For light of wavelength 5.0 nm, what is the energy (in eV) of a single photon? In what part of the electromagnetic spectrum is this?b. For an electron with a de Broglie wavelength of 5.0 nm, what is the kinetic energy (in eV)?arrow_forwardAn electron and a 6.70 kg bowling ball each have 4.25 eV of kinetic energy. HINT (a) Calculate 1, the de Broglie wavelength of the electron (in m). e' (b) Calculate 1, the de Broglie wavelength of the bowling ball (in m). (c) Calculate the wavelength å, of a 4.25 eV photon (in m). d.arrow_forward
- (a) If a photon and an electron each have the same energy of 20.0 eV, find the wavelength of each. (b) If a photon and an electron each have the same wavelength of 250 nm, find the energy of each. (c) You want to study an organic molecule that is about 250 nm long using either a photon or an electron microscope. Approximately what wavelength should you use and which probe, the electron or the photon, is likely to damage the molecule the least?arrow_forward(a) If the wavelength of an electron is 4.70 × 10- m, how fast is it moving? km/s (b) If the electron has a speed equal to 2.30 x 10° m/s, what is its wavelength? marrow_forwardA hypothetical atom (Fig. ) has energy levels at 0.00 eV (the ground level), 1.00 eV, and 3.00 eV. (a) What are the frequencies and wavelengths of the spectral lines this atom can emit when excited? (b) What wavelengths can this atom absorb if it is in its ground level?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning