
Concept explainers
(a)
The equation for u
from the given equation.
(a)

Answer to Problem 39.74AP
Explanation of Solution
Given info: The given equation is
The equation for the kinetic energy is given as,
Here,
Rearrange the above equation for
Let us assume
Further solve the equation.
Replace
Conclusion:
Therefore, the equation for
(b)
The minimum possible value of speed and corresponding kinetic energy.
(b)

Answer to Problem 39.74AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
From the above expression all the term is positive as well as the expression contains only positive sign so the minimum possible value that the speed can have according to the above expression is zero.
At zero speed the corresponding value of kinetic energy is also zero.
Conclusion:
Therefore, the minimum possible value of speed can be zero and corresponding kinetic energy will also be zero.
(c)
The maximum possible value of speed and corresponding kinetic energy.
(c)

Answer to Problem 39.74AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
The maximum value of speed is equal to the speed of light according to relativistic concept if the speed becomes more than the speed of light then its energy become unstable that would not exist practically.
At this speed of light, the kinetic energy increases without any limit.
Conclusion:
Therefore, the maximum possible value of speed can be speed of light and corresponding kinetic energy will increases without any limit.
(d)
The equation for the acceleration of the particle as a function of kinetic energy and power input.
(d)

Answer to Problem 39.74AP
Explanation of Solution
Given info: The given equation is
From equation (1), the expression for the speed is given as,
Write the expression for the acceleration of a particle.
Substitute
Replace
Substitute
Conclusion:
Therefore, the equation for the acceleration of the particle as a function of kinetic energy and power input is
(e)
The limiting form of the expression in part (d) at low energy and compare with the non-relativistic expression.
(e)

Answer to Problem 39.74AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At low energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at low energy is
(f)
The limiting form of the expression in part (d) at high energy and compare with the non-relativistic expression.
(f)

Answer to Problem 39.74AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At high energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at high energy is
(g)
The reason that answer to part (f) help account for the answer to part (c) at constant input power.
(g)

Answer to Problem 39.74AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From the answer of part (f) the expression for the acceleration is,
Here,
In part (c), the speed at high energy approaches to the speed of light. But from the acceleration equation if the energy is imparted to the particle at constant input power the acceleration is steeply decreases because the acceleration is inversely proportional to the cube root of the kinetic energy. So at high energy acceleration is very less and the velocity of the particle approaches to a constant value as indicate in part (c).
Conclusion:
Therefore, the acceleration of the particle is very less at high energy that gives the velocity of the particle a constant value.
Want to see more full solutions like this?
Chapter 39 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





