University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
14th Edition
ISBN: 9780134308142
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.10E
(a)
To determine
The potential difference through which electrons must be accelerated.
(b)
To determine
The potential difference of the electron must be accelerated to achieve the same energy as that of X-ray.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
. Through what potential difference must electrons be accelerated if they are to have (a) the
same wavelength as an x ray of wavelength 0.22 nm and (b) the same energy as the x ray
in part (a)?
An x-ray source generates EM radiation with a wavelength of 45.0 pm (10-12 m).
h = c = qelectron = e = 1.602x10-19 C, ke = 8.99x109 N·m2/C2,
What is the energy associated with this x-ray wave?
What potential difference must be applied to the electrons in the x-ray tube to produce this x-ray?
The air gap in the x-ray tube is 30.0 μ How much charge must be present on the plates to create this potential difference for a single electron?
What is the force on a single electron when it is at 30.0 μm from the positive plate?
Can an electron in a hydrogen atom have a speed of 3.60 × 105 m/s? If so, what are its energy and the radius of its orbit? What about a speed of 3.65 × 105 m/s?
Chapter 39 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the de Broglie wavelength (in m) of a proton moving at a speed of 3.30 × 104 m/s? m (b) What is the de Broglie wavelength (in m) of a proton moving at a speed of 1.92 × 108 m/s? m m (c) What is the de Broglie wavelength for an electron having a kinetic energy of 3.15 MeV?arrow_forwardUsing the Bohr model, calculate the speed of the electron when it is in the first excited state, n = 2. The Bohr radius ₁ 5.29 x 10-11 m. Assume the electron is non-relativistic.arrow_forwardAn electron and a photon each have a wavelength of 0.20 nm.What is the momentum (in kg m/s) of the (a) electron and (b) photon? What is the energy (in eV) of the (c) electron and (d) photon?arrow_forward
- (a) An electron moves with a speed of 4.70 * 10^6 m>s. What is its de Broglie wavelength? (b) A proton moves with the same speed. Determine its de Broglie wavelength.arrow_forwardAn electron is accelerated from rest through a potential difference of 3.19 x 102 V. Determine the following for the electron. (a) speed (ignore relativistic effects) m/s (b) de Broglie wavelength marrow_forwardWhen an electron is accelerated through a potential difference Δφ it acquires a kinetic energy eΔφ. Calculate the momentum, and hence the de Broglie wavelength, of an electron accelerated from rest through (a) 1.00 V. (b) 1.00 kV. (c) 100 kVarrow_forward
- X-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!](a) What is the momentum of the incident photons? eV/c(b) What is the momentum (magnitude and angle) of the scattered electrons? eV/c°magnitude=61802.35 angel=?arrow_forwardIn the photoelectric effect, electrons are ejected from a metal surface when light strikes it. A certain minimum energy, Emin, is required to eject an electron. Any energy absorbed beyond that minimum gives kinetic energy to the ejected electron. It is found that when light at a wavelength of 540 nm falls on a cesium surface, an electron is ejected with a kinetic energy of 2.60 x 10-20 J. When the wavelength is 400 nm, the kinetic energy is 1.54 x 10-19 J. Calculate Emin for cesium in joules Calculate the longest wavelength, in nanometers, that will eject electrons from cesium.arrow_forwardAn electron and a photon each have a wavelength of 2.0. What are their (a) momenta and (b) total energies? (c) Compare the kinetic energies of the electron and the photon.arrow_forward
- Electrons are accelerated from rest in a vacuum tube by an accelerating voltage. They strike a target and release x-rays as a result of the collision. If the highest-energy x-ray photons emitted by the target have a wavelength of 8.00 ✕ 10−11 m, what accelerating voltage (in V) is required? answer in Varrow_forwardDuring a certain experiment, the de Broglie wavelength of an electron is 400 nm = 4.0 ✕ 10−7 m, which is the same as the wavelength of violet light. How fast (in m/s) is the electron moving?arrow_forwardDuring a certain experiment, the de Broglie wavelength of an electron is 460 nm = 4.6 ✕ 10−7 m, which is the same as the wavelength of blue light. How fast (in m/s) is the electron moving?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning