Problems 35–37 investigate the motion of a projectile shot from a cannon. The fixed parameters are the acceleration of gravity, g = 9 . 8 m∕sec 2 , and the muzzle velocity, υ 0 = 500 m∕sec, at which the projectile leaves the cannon. The angle θ , in degrees, between the muzzle of the cannon and the ground can vary. The time that the projectile stays in the air is r ( θ ) = 2 υ 0 g sin π θ 180 = 102 sin π θ 180 seconds . (a) Find the time in the air for θ = 20°. (b) Find a linear function of θ that approximates the time in the air for angles near 20°. (c) Find the time in air and its approximation from part (b) for 21°
Problems 35–37 investigate the motion of a projectile shot from a cannon. The fixed parameters are the acceleration of gravity, g = 9 . 8 m∕sec 2 , and the muzzle velocity, υ 0 = 500 m∕sec, at which the projectile leaves the cannon. The angle θ , in degrees, between the muzzle of the cannon and the ground can vary. The time that the projectile stays in the air is r ( θ ) = 2 υ 0 g sin π θ 180 = 102 sin π θ 180 seconds . (a) Find the time in the air for θ = 20°. (b) Find a linear function of θ that approximates the time in the air for angles near 20°. (c) Find the time in air and its approximation from part (b) for 21°
Problems 35–37 investigate the motion of a projectile shot from a cannon. The fixed parameters are the acceleration of gravity, g = 9.8 m∕sec2, and the muzzle velocity, υ0 = 500 m∕sec, at which the projectile leaves the cannon. The angle θ, in degrees, between the muzzle of the cannon and the ground can vary.
The time that the projectile stays in the air is
r
(
θ
)
=
2
υ
0
g
sin
π
θ
180
=
102
sin
π
θ
180
seconds
.
(a) Find the time in the air for θ = 20°.
(b) Find a linear function of θ that approximates the time in the air for angles near 20°.
(c) Find the time in air and its approximation from part (b) for 21°
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Does the series converge or diverge
Chapter 3 Solutions
Calculus: Single And Multivariable, 7e Wileyplus Registration Card + Loose-leaf Print Companion
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY