
Concept explainers
(a)
Reading of clock in tail of rocket.
(a)

Explanation of Solution
Given:
Rocket has proper length
Rocket has one clock in nose and one in tail that are synchronized in frame of rocket.
Clock in nose of rocket and clock on ground both read zero as they pass each other.
Formula used:
Write the expression of time measured by clock in tail in frame of rocket
Here,
Write the expression of length of rocket according to ground frame
Here,
Substitute
Simplify the above expression
Calculation:
Substitute
Conclusion:
Thus, the clock in tail of rocket reads
(b)
Reading of clock in tail of rocket with respect to ground.
(b)

Explanation of Solution
Given:
Rocket has proper length
Rocket has one clock in nose and one in tail that are synchronized in frame of rocket.
Clock in nose of rocket and clock on ground both read zero as they pass each other.
Formula used:
Write the expression of time measured by clock in tail of rocket according to ground frame
Calculation:
Substitute
Conclusion:
Thus, the clock in tail of rocket reads
(c)
Reading of clock in nose of rocket according to ground.
(c)

Explanation of Solution
Given:
Rocket has proper length
Rocket has one clock in nose and one in tail that are synchronized in frame of rocket.
Clock in nose of rocket and clock on ground both read zero as they pass each other.
Formula used:
Write the expression of time measured by clock in nose of rocket in ground frame
Calculation:
Substitute
Conclusion:
Thus, the clock in nose of rocket reads
(d)
Reading of clock in nose with respect to frame of rocket.
(d)

Explanation of Solution
Given:
Rocket has proper length
Rocket has one clock in nose and one in tail that are synchronized in frame of rocket.
Clock in nose of rocket and clock on ground both read zero as they pass each other.
Formula used:
Since the clock in nose of rocket is synchronized with clock in tail of rocket in frame of rocket therefore
Here,
Calculation:
Substitute
Conclusion:
Thus, the clock in nose of rocket reads
(e)
Reading of clock on ground when signal is received by observer on ground.
(e)

Explanation of Solution
Given:
Rocket has proper length
Rocket has one clock in nose and one in tail that are synchronized in frame of rocket.
Clock in nose of rocket and clock on ground both read zero as they pass each other.
Signal is sent from nose of rocket to ground when clock in nose of rocket reads
Formula used:
Write the expression of time
Here,
Write the expression of time when signal is sent
Here,
Write the expression of the traveling time
Calculation:
Substitute
Substitute
Substitute
Conclusion:
Thus, the clock on ground reads
(f)
Reading of clock in nose of rocket when signal is received at nose of rocket.
(f)

Explanation of Solution
Given:
Rocket has proper length
Rocket has one clock in nose and one in tail that are synchronized in frame of rocket.
Clock in nose of rocket and clock on ground both read zero as they pass each other.
Observer on ground sends return signal to nose of rocket upon reception of the signal.
Formula used:
Write the expression of time
Substitute
Write the expression of total time
Write the expression of time dilatation equation
Here,
Substitute
Calculation:
Substitute
Conclusion:
Thus, the clock in nose of rocket reads
Want to see more full solutions like this?
Chapter 39 Solutions
Physics for Scientists and Engineers
- (Figure 1)In each case let w be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w Find the direction of the force exerted on the strut by the pivot in the arrangement (a). Express your answer in degrees. Find the tension Tb in the cable in the arrangement (b). Express your answer in terms of w. Find the magnitude of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in terms of w.arrow_forward(Figure 1)In each case let ww be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w. Find the direction of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in degrees.arrow_forwardA 70.0 cm, uniform, 40.0 N shelf is supported horizontally by two vertical wires attached to the sloping ceiling (Figure 1). A very small 20.0 N tool is placed on the shelf midway between the points where the wires are attached to it. Find the tension in the left-hand wire. Express your answer with the appropriate units.arrow_forward
- Find the total bind Mev. binding energy for 13 Carbon, 6C (atomic mass = 13.0033554)arrow_forwardWhat is the 27 energy absorbed in this endothermic Auclear reaction 2] Al + 'n → 27 Mg + ! H? (The atom mass of "Al is 26.981539u. and that of 11 Mg is 26.984341u) MeVarrow_forwardWhat is the energy released in this nuclear reaction 1 F + "', H-1 O+ He? 19 19 16 (The atomic mass of 1F is 18.998403 u, and that of 20 is 15.9949154) MeV.arrow_forward
- What is the energy released in this B+ nuclear reaction خالد 2½ Al w/ Mg + ie? (The atomic mass of 11 Al is 23.9999394 and that > of 12 Mg is 23.985041 u) MeV.arrow_forwardWhat is the energy released / absorbed in this nuclear reaction 14 N+ & He → » O + ! N? (The atomic mass of 14 N is 14.003074u. 17N+ and that of 10 is 16.9991324). MeVarrow_forwardCan someone help me answer this question thanks.arrow_forward
- Can someone help me with this question thanks.arrow_forward4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b) Determine the total force (magnitude and direction) on one of the electrons from the other three?arrow_forwardPortfolio Problem 3. A ball is thrown vertically upwards with a speed vo from the floor of a room of height h. It hits the ceiling and then returns to the floor, from which it rebounds, managing just to hit the ceiling a second time. Assume that the coefficient of restitution between the ball and the floor, e, is equal to that between the ball and the ceiling. Compute e.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





