Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
15th Edition
ISBN: 9781305289963
Author: Debora M. Katz
Publisher: Cengage Custom Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 39, Problem 10PQ

(a)

To determine

The coordinates (x,y,z,t) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 400m/s.

(a)

Expert Solution
Check Mark

Answer to Problem 10PQ

The coordinates (12.2m,4.00m,6.00m,4.00×104s) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 400m/s.

Explanation of Solution

Write the expression to obtain the Lorentz factor.

    γ=11(vrelc)2                                                                                                   (I)

Here, γ is the Lorentz factor, vrel is the relative velocity of the object and c is the speed of light.

Write the expression to obtain the expression of time interval in the laboratory frame.

    t=γ(t'+vrelc2x')                                                                                                 (II)

Here, t is the time interval in the laboratory frame, x' is the position of the object along x axis in primed frame, vrel is the relative velocity of the object and t' is the time interval in primed frame.

Write the expression to obtain the position of the object along x axis in laboratory frame.

    x=γ(x'+vrelt')                                                                                                   (III)

Here, x is the position of the object along x axis in laboratory frame, γ is the Lorentz factor, x' is the position of the object along x axis in primed frame, vrel is the relative velocity of the object and t' is the time interval in primed frame.

As the object is moving with a relative velocity along the x-axis only, thus the coordinate in y-axis and y' axis remain same and similarly the coordinate in z-axis and z' axis remain same

Write the expression to obtain the y coordinate in laboratory frame.

    y=y'                                                                                                                    (IV)

Here, y and y' are coordinates in laboratory frame and primed frame respectively.

Write the expression to obtain the z coordinate in laboratory frame.

    z=z'                                                                                                                    (V)

Here, z and z' are coordinates in laboratory frame and primed frame respectively.

Conclusion:

Substitute 400.0m/s for vrel and 3×108m/s for c in equation (I) to calculate γ.

    γ=11(400.0m/s3×108m/s)2=110=1

Substitute 1 for γ, 3×108m/s for c, 400.0m/s for vrel, (4.00×104s) for t' and 12.0m for x' in equation (II) to calculate t.

    t=1((4.00×104s)+400.0m/s(3×108m/s)2(12.0m))=((4.00×104s)+(5.33×1014s))=4.00×104s

Substitute 1 for γ, 400.0m/s for vrel, (4.00×104s) for t' and 12.0m for x' in equation (III) to calculate x.

    x=1(12.0m+(400.0m/s)(4.00×104s))=12.0+0.16m=12.16m12.2m

Substitute 4.00m for y' in equation (III) to calculate y.

    y=4.00m

Substitute 6.00m for z' in equation (IV) to calculate z.

    z=6.00m

Therefore, the coordinates (12.2m,4.00m,6.00m,4.00×104s) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 400m/s.

(b)

To determine

The coordinates (x,y,z,t) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 400m/s.

(b)

Expert Solution
Check Mark

Answer to Problem 10PQ

The coordinates (11.8m,4.00m,6.00m,4.00×104s) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 400m/s.

Explanation of Solution

Conclusion:

Substitute 400.0m/s for vrel and 3×108m/s for c in equation (I) to calculate γ.

    γ=11(400.0m/s3×108m/s)2=110=1

Substitute 1 for γ, 3×108m/s for c, 400.0m/s for vrel, (4.00×104s) for t' and 12.0m for x' in equation (II) to calculate t.

    t=1((4.00×104s)+400.0m/s(3×108m/s)2(12.0m))=((4.00×104s)(5.33×1014s))=4.00×104s

Substitute 1 for γ, 400.0m/s for vrel, (4.00×104s) for t' and 12.0m for x' in equation (III) to calculate x.

    x=1(12.0m+(400.0m/s)(4.00×104s))=12.0m0.16 m=11.84 m11.8 m

Substitute 4.00m for y' in equation (III) to calculate y.

    y=4.00m

Substitute 6.00m for z' in equation (IV) to calculate z.

    z=6.00m

Therefore, the coordinates (11.8m,4.00m,6.00m,4.00×104s) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 400m/s.

(c)

To determine

The coordinates (x,y,z,t) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 2.0×108m/s.

(c)

Expert Solution
Check Mark

Answer to Problem 10PQ

The coordinates (1.1×105m,4.00m,6.00m,5.368×104s) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 2.0×108m/s.

Explanation of Solution

Conclusion:

Substitute 2.0×108m/s for vrel and 3×108m/s for c in equation (I) to calculate γ.

    γ=11(2.0×108m/s3×108m/s)2=1.342

Substitute 1.342 for γ, 3×108m/s for c, 2.0×108m/s for vrel, (4.00×104s) for t' and 12.0m for x' in equation (II) to calculate t.

    t=1.342((4.00×104s)+2.0×108m/s(3×108m/s)2(12.0m))=1.342[(4.00×104s)(2.667×108s)]=5.368×104s

Substitute 1.342 for γ, 2.0×108m/s for vrel, (4.00×104s) for t' and 12.0m for x' in equation (III) to calculate x.

    x=1.342(12.0m+(2.0×108m/s)(4.00×104s))=1.342(12.0m+8×104m)=1.072×105m1.1×105m

Substitute 4.00m for y' in equation (III) to calculate y.

    y=4.00m

Substitute 6.00m for z' in equation (IV) to calculate z.

    z=6.00m

Therefore, the coordinates (1.1×105m,4.00m,6.00m,5.368×104s) as measured in the laboratory frame if the particle is moving along the x and x' axes with relative speed of 2.0×108m/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For single-slit diffraction, calculate the first three values of (the total phase difference between rays from each edge of the slit) that produce subsidiary maxima by a) using the phasor model, b) setting dr = 0, where I is given by, I = Io (sin (10) ². 2
A capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H .   (D)What is the charge on the capacitor 0.0235 s after the connection to the inductor is made? Interpret the sign of your answer. (e) At the time given in part (d), what is the current in the inductor? Interpret the sign of your answer. (f) Atthe time given in part (d), how much electrical energy is stored in the capacitor and how much is stored in the inductor?
Close-up view etermine; The volume of the object given that the initial level of water in the measuring cylinder 23cm3. The density of the object. simple cell made by dipping copper and zinc plates into dilute sulfuric acid solution. A bull onnected across the plates using a wire. State what constitute current flow through the wire The bulb connected across is observed to light for some time and then goes out. State t possible asons for this observation. State two ways in which the processes named in question (b) above can be minimized t the bulb light for a longer period. ead is rated 80Ah. Determine the current that can be drawn continuously

Chapter 39 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 39 - Prob. 6PQCh. 39 - Prob. 7PQCh. 39 - Prob. 8PQCh. 39 - Prob. 9PQCh. 39 - Prob. 10PQCh. 39 - Prob. 11PQCh. 39 - Prob. 12PQCh. 39 - Prob. 13PQCh. 39 - Prob. 14PQCh. 39 - Prob. 15PQCh. 39 - Prob. 16PQCh. 39 - Prob. 17PQCh. 39 - Prob. 18PQCh. 39 - Prob. 19PQCh. 39 - Prob. 20PQCh. 39 - Prob. 21PQCh. 39 - Prob. 22PQCh. 39 - Prob. 23PQCh. 39 - A starship is 1025 ly from the Earth when measured...Ch. 39 - A starship is 1025 ly from the Earth when measured...Ch. 39 - Prob. 26PQCh. 39 - Prob. 27PQCh. 39 - Prob. 28PQCh. 39 - Prob. 29PQCh. 39 - Prob. 30PQCh. 39 - Prob. 31PQCh. 39 - Prob. 32PQCh. 39 - Prob. 33PQCh. 39 - Prob. 34PQCh. 39 - Prob. 35PQCh. 39 - Prob. 36PQCh. 39 - Prob. 37PQCh. 39 - Prob. 38PQCh. 39 - As measured in a laboratory reference frame, a...Ch. 39 - Prob. 40PQCh. 39 - Prob. 41PQCh. 39 - Prob. 42PQCh. 39 - Prob. 43PQCh. 39 - Prob. 44PQCh. 39 - Prob. 45PQCh. 39 - Prob. 46PQCh. 39 - Prob. 47PQCh. 39 - Prob. 48PQCh. 39 - Prob. 49PQCh. 39 - Prob. 50PQCh. 39 - Prob. 51PQCh. 39 - Prob. 52PQCh. 39 - Prob. 53PQCh. 39 - Prob. 54PQCh. 39 - Prob. 55PQCh. 39 - Prob. 56PQCh. 39 - Consider an electron moving with speed 0.980c. a....Ch. 39 - Prob. 58PQCh. 39 - Prob. 59PQCh. 39 - Prob. 60PQCh. 39 - Prob. 61PQCh. 39 - Prob. 62PQCh. 39 - Prob. 63PQCh. 39 - Prob. 64PQCh. 39 - Prob. 65PQCh. 39 - Prob. 66PQCh. 39 - Prob. 67PQCh. 39 - Prob. 68PQCh. 39 - Prob. 69PQCh. 39 - Prob. 70PQCh. 39 - Joe and Moe are twins. In the laboratory frame at...Ch. 39 - Prob. 72PQCh. 39 - Prob. 73PQCh. 39 - Prob. 74PQCh. 39 - Prob. 75PQCh. 39 - Prob. 76PQCh. 39 - Prob. 77PQCh. 39 - In December 2012, researchers announced the...Ch. 39 - Prob. 79PQCh. 39 - Prob. 80PQCh. 39 - How much work is required to increase the speed of...Ch. 39 - Prob. 82PQCh. 39 - Prob. 83PQCh. 39 - Prob. 84PQCh. 39 - Prob. 85PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY