Concept explainers
(a)
The equation for u
from the given equation.
(a)

Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
The equation for the kinetic energy is given as,
Here,
Rearrange the above equation for
Let us assume
Further solve the equation.
Replace
Conclusion:
Therefore, the equation for
(b)
The minimum possible value of speed and corresponding kinetic energy.
(b)

Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
From the above expression all the term is positive as well as the expression contains only positive sign so the minimum possible value that the speed can have according to the above expression is zero.
At zero speed the corresponding value of kinetic energy is also zero.
Conclusion:
Therefore, the minimum possible value of speed can be zero and corresponding kinetic energy will also be zero.
(c)
The maximum possible value of speed and corresponding kinetic energy.
(c)

Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
The maximum value of speed is equal to the speed of light according to relativistic concept if the speed becomes more than the speed of light then its energy become unstable that would not exist practically.
At this speed of light, the kinetic energy increases without any limit.
Conclusion:
Therefore, the maximum possible value of speed can be speed of light and corresponding kinetic energy will increases without any limit.
(d)
The equation for the acceleration of the particle as a function of kinetic energy and power input.
(d)

Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (1), the expression for the speed is given as,
Write the expression for the acceleration of a particle.
Substitute
Replace
Substitute
Conclusion:
Therefore, the equation for the acceleration of the particle as a function of kinetic energy and power input is
(e)
The limiting form of the expression in part (d) at low energy and compare with the non-relativistic expression.
(e)

Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At low energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at low energy is
(f)
The limiting form of the expression in part (d) at high energy and compare with the non-relativistic expression.
(f)

Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At high energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at high energy is
(g)
The reason that answer to part (f) help account for the answer to part (c) at constant input power.
(g)

Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From the answer of part (f) the expression for the acceleration is,
Here,
In part (c), the speed at high energy approaches to the speed of light. But from the acceleration equation if the energy is imparted to the particle at constant input power the acceleration is steeply decreases because the acceleration is inversely proportional to the cube root of the kinetic energy. So at high energy acceleration is very less and the velocity of the particle approaches to a constant value as indicate in part (c).
Conclusion:
Therefore, the acceleration of the particle is very less at high energy that gives the velocity of the particle a constant value.
Want to see more full solutions like this?
Chapter 38 Solutions
PHYSICS FOR SCI. & ENGR(LL W/WEBASSIGN)
- Please draw a sketch and a FBDarrow_forwardAnswer everything or don't answer at allarrow_forwardPart A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mmarrow_forward
- For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor. (a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.arrow_forwardA mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the wall. (a) What is the change in the angle of elevation of the Sun, between the two observations?arrow_forwardIt is not (theta 1i) or (pi/2 - theta 2i)arrow_forward
- Assume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forwardA proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 ☑ Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. 5.4e5 V × Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…arrow_forward
- (1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…arrow_forwardThe figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +yarrow_forwardThree charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 1.00 μC, and L = 0.850 m). Calculate the total electric force on the 7.00-μC charge. magnitude direction N ° (counterclockwise from the +x axis) y 7.00 με 9 L 60.0° x -4.00 μC ①arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





