University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.39P
(a)
To determine
The slope and the
(b)
To determine
The Compton wavelength.
(c)
To determine
The wavelength
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solar radiation falls on Earth's surface at a
rate of 1900 W/m².
Assuming that the radiation has an average
wavelength of 580 nm, how many photons per
square meter per second fall on the surfaces?
The speed of light is 3 × 10° m/s and Planck's
constant is 6.62607 × 10-34 J. s.
Answer in units of photon/m² · s.
2
In a Compton scattering experiment, the incident X-rays have a wavelength of 0.2690 nm, and the scattered X-rays have a wavelength
of 0.2700 nm. Through what angle in the drawing are the X-rays scattered?
Number
59.6
Units
λ
Photon scattering from
stationary electron
In a Compton scattering experiment, the incident X-rays have a wavelength of 0.2681 nm, and the scattered X-rays have a wavelength
of 0.2704 nm. Through what angle in the drawing are the X-rays scattered?
Number
MO
Units
X
0
ми
2
Photon scattering from
stationary electron
Chapter 38 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the energy of an electron whose de Brogue wavelength is that of a photon of yellow light with wavelength 590 nm? (b) What is the de Brogue wavelength of an electron whose energy is that of the photon of yellow light?arrow_forward12.2 A 1.0000×10-11 m wavelength x-ray photon strikes an atom in an example of Compton scattering. The scattered photon has a wavelength of 1.0301×10-11 m at an angle of 29° from the initial direction. What is the velocity of the emitted electron?arrow_forwardb. An electron and a photon has the same wavelength of 0.21 nm. Calculate the momentum and energy (in eV) of the electron and the photon. (Given c =3.00x108 m s-1, h =6.63 x 1034 J s, me=9.11 x 10-31 kg, mp=1.67 x 1027 kg and e=1.60x1019 C)arrow_forward
- You want to use a microscope to study the structure of a mitochondrion about 1.00 um in size. To be able to observe small details within the mitochondrion, you want to use a wavelength of 0.0500 nm. If your microscope uses light of this wavelength, what is the momentum p of a photon? p = kg-m/s If your microscope uses light of this wavelength, what is the energy E of a photon? E = If instead your microscope uses electrons of this de Broglie wavelength, what is the momentum p. of an electron? Pe = kg-m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the velocity v of an electron? v = m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the kinetic energy K of an electron? K = What advantage do your calculations suggest electrons have compared to photons? O An electron's charge allows it to attach to observed particles, whereas a photon's electric neutrality prevents it from moving close enough to the observed particles…arrow_forwardQUESTION 1 A photon emitted by a blackbody has an energy of 1.021 J. What is the frequency of such a photon?(h=6.63.10-34 J.s) QUESTION 2 What is the energy (in eV) of a gamma-ray photon with frequency f=5.67-102¹ Hz? (h=4.136-10-15eV/Hz) QUESTION 3 The ground level of the hydrogen atom has an energy E,= 13.6 eV while the first excited state has an energy Calculate the energy difference of an electron going from the first excited state back to the ground state. 1 QUESTION 4 What is the frequency of the photon emitted by the electron in Question 3? QUESTION 5 E 2= -3.4 eV. An electron has a wavelength of 0.267 nm (1 nm = 10-9 m). What is the speed of such electron orbiting the nucleus? ( m=9.11-10-31 kg)arrow_forwardPhotons that have a wavelength of 0.00226 nm are Compton scattered off stationary electrons at 33.0 degrees. What is the energy E of the scattered photons? E = ? Jarrow_forward
- What is the wavelength of the photon with energy E = 5.4 × 10-15 J. Use the unit of nm for the wavelengtharrow_forwardEx1/ A photon with momentum p = 1.02 MeV/c is scattered by a stationary free electron. Its momentum on scattering becomes p' = 0.255 MeV/c. At what angle is the photon scattered? Ex2/ A photon is scattered at an angle =120° by a stationary free electron. As a result the electron acquires a kinetic energy of the incident photon. T = 0.45 MeV. Find the energyarrow_forwardA watt is a unit of energy per unit time, and one watt (W) is equal to one joule per second (J⋅s−1). A 40.0 W incandescent lightbulb produces about 4.00% of its energy as visible light. Assuming that the light has an average wavelength of 510.0 nm, calculate how many such photons are emitted per second by a 40.0 W incandescent lightbulb.arrow_forward
- Just like the optical part of the spectrum, radio waves can be described in terms of photons - although they can be very difficult to detect. Consider the photons in radio waves from an FM station that has a 88.5-MHz broadcast frequency. A. Find the energy, in joules, of a photon in the radio waves. B. Find the energy, in electron volts, of a photon in the radio waves.arrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.06 x 10 18 nm (b) What is its wavelength in flint glass? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the flint glass? The energy of the photon changes. The energy of the photon does not change. Hz. Explain.arrow_forwardOne mole of a silvery white element produces a bright purple emission having an energy of 2.86 × 105 J. What would be the corresponding wavelength of an emitted photon? Select one: a.1.44 × 1030 m b.8.64 × 106 m c.4.19 × 10–7 m d.1.16 × 10–2 m Which of the following statements best describes the law of multiple proportions? Select one: a.Different processes such as cellular respiration and combustion of fossil fuels produce carbon dioxide. b.Carbon trapped in fossil fuels is eventually released into the atmosphere when they undergo combustion. c.Varying degrees of combustion of fossil fuels may lead to the formation of carbon monoxide or carbon dioxide. d.None of these.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax