University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.20E
To determine
The wavelength of the incident photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A photon scatters in the backward direction (f = 180°) from a free proton that is initially at rest. What must the wavelength of the incident photon be if it is to undergo a 10.0% change in wavelength as a result of the scattering?
A photon has a collision with a stationary electron (h/mc = 2.43 × 10–12 m) and loses 5.0% of its energy. The photon scattering angle is 180°. What is the wavelength of the incident photon in this scattering process?
X-rays are scattered from a target at an angle of 54.9° with respect to the direction of the incident beam. What is the wavelength shift (in m) of the scattered x-rays? What If? For what scattering angle (in degrees) will the wavelength shift of x-rays be exactly double that found in part (a)?
Chapter 38 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A photon with wavelength l = 0.1050 nm is incident on an electron that is initially at rest. If the photon scatters at an angle of 60.0 from its original direction, what are the magnitude and direction of the linear momentum of the electron just after it collides with the photon?arrow_forwardA photon with wavelength I = 0.1050 nm is incident on an electron that is initially at rest. If the photon scatters at an angle of 60.0° from its original direction, what are the magnitude and direction of the linear momentum of the electron just after it collides with the photon?arrow_forwardA photon scatters in the backward direction 1f = 1802 from a free proton that is initially at rest. What must the wavelength of the incident photon be if it is to undergo a 10.0% change in wavelength as a result of the scattering?arrow_forward
- A hydrogen atom on the surface of the sun radiates a photon with wavelength 1800 nm. The sun has a radius, Tsun = 6.96 × 108 m, and a mass, Msun = 1.99 × 10³⁰ kg. (a) Calculate the change in wavelength when the photon is observed a long way - effectively at an infinite distance from the sun (or any other massive object). (b) How fast and in what direction would the observer have to move in order to cancel this change in wavelength?arrow_forwardAn electron at rest is struck by an x-ray photon. If the scatter angle is 180° and the final speed of the electron is 7.12 x 105 m/s, what was the wavelength of the incident photon?arrow_forwardProblem 4: A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle + from its original direction, what is wavelength of the photon after the collision. h= 6.626 x 10:34 J·s and c = 3.0 x 108 m/s.arrow_forward
- An x-ray photon with wavelength 15.0 pm is scattered at 84.0° by an electron. What is the wavelength of the scattered photon?arrow_forwardAn incident x-ray photon is scattered from a free electron that is initially at rest. The photon is scattered straight back at an angle of 180 from its initial direction. The wavelength of the scattered photon is 0.0830 nm. (a) What is the wavelength of the incident photon? (b) What are the magnitude of the momentum and the speed of the electron after the collision? (c) What is the kinetic energy of the electron after the collision?arrow_forwardA 140-keV photon strikes an electron and scatters through an angle of 120° from its original direction. (melectron = 9.11 × 10-31 kg, c = 3.00× 108 m/s, h = 6.626 × 10-34 J ∙s) (a) What is the wavelength of the photon before scattering? (b) What is the photon wavelength after scattering?arrow_forward
- A 2.0-kg object falls from a height of 5.0 m to the ground. If all the gravitational potential energy of this mass could be converted to visible light of wavelength 5.0 × 10−7 m, how many photons would be produced?arrow_forwardA photon has an energy E and wavelength l before scattering from a free electron. After scattering through a 135° angle, the photon’s wavelength has increased by 10.0%. Find the initial wavelength and energy of the photon.arrow_forwardA x-ray photon of wavelength 147.0 pm is scattered through an angle of 60° by an electron that is initially at rest. (a) Calculate the wavelength of the scattered x-ray photon. (b) How much kinetic energy does the electron carry?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning