MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
bartleby

Concept explainers

Question
Book Icon
Chapter 38, Problem 38.1DQ
To determine

In what ways photons resemble other particles such as electrons and what way do they differ and whether the photons have mass and electric charge. Also determine if photons can be accelerated and their mechanical properties.

Expert Solution & Answer
Check Mark

Answer to Problem 38.1DQ

Photons are elementary particles like electrons but are force carriers and not part of matter. Photons have zero rest mass and are charge less particles. Photons cannot be accelerated in the local frame and have momentum and energy proportional to the frequency.

Explanation of Solution

The packages of electromagnetic energy are carried by particles called photons.

Photons are elementary particle that are force carriers of electromagnetic force. Electron are fundamental particles but are not force carriers rather constituents of matter. Both electron and photon exhibit wave-particle duality and are quantum particles. Electrons are charged while photons are charge less.

Photons have zero rest mass. They move with a constant velocity given by c and do not get accelerated in the local frame. Photons are charge less particles but have energy and momentum proportional to the frequency of the wave. The energy of one photon is proportional to the frequency and inversely proportional to the wavelength. The magnitude of momentum is given by Ec where E is the energy.

Conclusion:

Thus, photons are elementary particles like electrons but are force carriers and not part of matter. Photons have zero rest mass and are charge less particles. Photons cannot be accelerated in the local frame and have momentum and energy proportional to the frequency.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
02:18
Students have asked these similar questions
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…
As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction. i (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary: g.) h = (b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.) NB - NT = The normal force…

Chapter 38 Solutions

MASTERINGPHYSICS W/ETEXT ACCESS CODE 6

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning