The rest energy of an electron is 0.511 MeV. The rest energy of a proton is 938 MeV. Assume both particles have kinetic energies of 2.00 MeV. Find the speed of (a) the electron and (b) the proton. (c) By what factor does the speed of the electron exceed that of the proton? (d) Repeat the calculations in parts (a) through (c) assuming both particles have kinetic energies of 2 000 MeV.
(a)

Answer to Problem 35P
Explanation of Solution
Given info: The kinetic energy of the electron and proton is
Formula to calculate the total energy of particle is,
Formula to calculate the total energy of the particle is,
Here,
Equate the equation (1) and equation (2).
Formula to calculate the Lorentz factor is,
Substitute
Rearrange the above equation for
Formula to calculate the rest energy of particle is,
Substitute
The speed of the electron is,
Here,
Substitute
Thus, the speed of the electron is
Conclusion:
Therefore, the speed of the electron is
(b)

Answer to Problem 35P
Explanation of Solution
Given info: The kinetic energy of the electron and proton is
From equation (5), the speed of the particle is given as,
The speed of the proton is,
Here,
Substitute
Thus, the speed of the proton is
Conclusion:
Therefore, the speed of the proton is
(c)

Answer to Problem 35P
Answer The factor by which speed of electron exceed that of the proton is
Explanation of Solution
Given info: The kinetic energy of the electron and proton is
The ratio of the speed of the electron and proton is,
Substitute
Thus, the factor by which speed of electron exceed that of the proton is
Conclusion:
Therefore, the factor by which speed of electron exceed that of the proton is
(d)

Answer to Problem 35P
Explanation of Solution
Given info: The kinetic energy of the electron and proton is
The speed of the electron is,
Substitute
The speed of the electron is,
Substitute
The ratio of the speed of the electron and proton is,
Substitute
Thus, the speeds of the electron and proton are
Conclusion:
Therefore, the speeds of the electron and proton are
Want to see more full solutions like this?
Chapter 38 Solutions
PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





