
Concept explainers
A piston–cylinder device contains 0.85 kg of refrigerant-134a at −10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Determine (a) the final pressure, (b) the change in the volume of the cylinder, and (c) the change in the enthalpy of the refrigerant-134a.
FIGURE P3–30
(a)

The final pressure of the refrigerant R-134a.
Answer to Problem 29P
The final pressure of the refrigerant R-134a is
Explanation of Solution
The final pressure is equal to the initial pressure of the refrigerant R-134a.
Here, atmospheric pressure is
Conclusion:
Substitute 88 kPa for
Thus, the final pressure of the refrigerant R-134a is
(b)

The change in the volume of the cylinder.
Answer to Problem 29P
The change in the volume of the cylinder is
Explanation of Solution
Convert the unit of initial pressure from kPa to MPa.
Write the formula of interpolation method of two variables at
Here, the variables denote by x and y are pressure and specific volume.
Calculate the initial volume of cylinder.
Here, the initial state specific volume is
Calculate the final volume of cylinder.
Here, the final state specific volume is
Calculate the change in the volume of cylinder.
Conclusion:
Refer to Table A-13, obtain the values of below variables as in Table (I) at
Pressure, MPa | Specific volume, |
0.06 | 0.35048 |
0.0904 | ? |
0.10 | 0.20743 |
Substitute 0.06 for
Thus, the specific volume of refrigerant R-134a at the initial state of 90.4 kPa and
Refer to Table A-13, obtain the values of below variables as in Table (II) at
Pressure, MPa | Enthalpy, |
0.06 | 248.60 |
0.0904 | ? |
0.10 | 247.51 |
Substitute 0.06 for
Thus, the enthalpy of refrigerant R-134a at the initial state of 90.4 kPa and
Apply spreadsheet and solve the final state specific volume at
Refer to Table A-13, obtain the values of below variables as in Table (III) at
Temperature, | Specific volume, |
10 | 0.37893 |
15 | ? |
20 | 0.39302 |
Substitute 10 for
Similarly, solve final state specific volume at
Now use interpolation method again to solve the final state specific volume at
Pressure, MPa | Specific volume, |
0.06 | 0.386 |
0.0904 | ? |
0.10 | 0.2294 |
Substitute 0.06 for
Thus, the final state specific volume at
Apply the above steps to calculate the enthalpy at
Substitute 0.85 kg for m and
Substitute 0.85 kg for m and
Substitute
Thus, the change in the volume of the cylinder is
(c)

The change in the enthalpy of the refrigerant R-134a.
Answer to Problem 29P
The change in the enthalpy of the refrigerant R-134a is
Explanation of Solution
Calculate the total enthalpy change of refrigerant R-134a.
Here, enthalpy at initial state and final state are
Conclusion:
Substitute 0.85 kg for m,
Thus, the change in the enthalpy of the refrigerant R-134a is
Want to see more full solutions like this?
Chapter 3 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwarddraw the pneumatic circuit to operate a double-acting cylinder with: 1. Extension: Any of two manual conditions plus cylinder fully retracted, → Extension has both meter-in and meter-out, 2. Retraction: one manual conditions plus cylinder fully extended, → Retraction is very fast using quick exhaust valve.arrow_forward
- Correct answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you. Expert solution plsarrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forward
- Correct answer is written below. Detailed and complete solution only with fbd. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forward
- Correct answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





