Concept explainers
(a).
Thedischarge of charged electroscope by shining in ultraviolet light
(a).
Answer to Problem 1CQ
Solution: The discharge of charged electroscope by shining in ultraviolet light is due to
Explanation of Solution
Given Info: Negatively charged electroscope
Ultraviolet light
The discharge is due to Photoelectric effect. According to Einstein’s photoelectric equation, each photon in incident light will bring an electron on top of metal surface (which is called as work function) and the leftover energy of light is given to photo electrons as kinetic energy. In the present case, incident light energy of ultraviolet should be greater than work function of negatively charged electroscope and this causes discharge.
Conclusion:
Thedischarge of charged electroscope by shining in ultraviolet lightis due to Photoelectric effect.
(b).
Thedischarge of uncharged electroscope by shining in ultraviolet light may not make positively charged electroscope.
(b).
Answer to Problem 1CQ
Solution:
In the present case of uncharged electroscope, incident light energy of ultraviolet should be lesser than work function and this cause non -discharge of electroscope. Hence, the electroscope may not become positive.
Explanation of Solution
Given Info: Uncharged electroscope
Ultraviolet light
In the present case of uncharged electroscope, incident light energy of ultraviolet should be lesser than work function and this cause non discharge of electroscope. Hence, the electroscope may not become positive.
Conclusion:
In the present case of uncharged electroscope, incident light energy of ultraviolet should be lesser than work function and this cause non discharge of electroscope. Hence, the electroscope may not become positive.
Want to see more full solutions like this?
Chapter 38 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
- Solve and answer correctly please.Thank you!!arrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forwardTwo-point charges of 5.00 µC and -3.00 µC are placed 0.250 m apart.a) What is the electric force on each charge? Include strength and direction and a sketch.b) What would be the magnitude of the force if both charges are positive? How about the direction? c) What will happen to the electric force on each piece of charge if they are moved twice as far apart? (Give a numerical answer as well as an explanation.)arrow_forward
- y[m] The figure shows two snapshots of a single wave on a string. The wave is traveling to the right in the +x direction. The solid line is a snapshot of the wave at time t=0 s, while the dashed line is a snapshot of the wave at t=0.48s. 0 0.75 1.5 2.25 3 8 8 6 6 4 2 4 2 0 -2 -2 -4 -4 -6 -6 -8 -8 0 0.75 1.5 2.25 3 x[m] Determine the period of the wave in units of seconds. Enter your numerical answer below including at least 3 significant figures. Do not enter a fraction, do not use scientific notation.arrow_forwardNo chatgpt pls will upvotearrow_forwardAn extremely long, solid nonconducting cylinder has a radius Ro. The charge density within the cylinder is a function of the distance R from the axis, given by PE (R) = po(R/Ro)², po > 0.arrow_forward
- An extremely long, solid nonconducting cylinder has a radius Ro. The charge density within the cylinder is a function of the distance R from the axis, given by PE (R) = po(R/Ro)², po > 0.arrow_forwardA sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?arrow_forwardA car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON