EBK MATHEMATICS FOR MACHINE TECHNOLOGY
8th Edition
ISBN: 9781337798396
Author: SMITH
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 18AR
To determine
(a)
The measurement on micrometer scale in part (a).
To determine
(b)
The measurement on micrometer scale in part (b).
To determine
(c)
The measurement on micrometer scale in part (c).
To determine
(d)
The measurement on micrometer scale in part (d).
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Good Day, Please assist with this query.
4. Consider Chebychev's equation
(1 - x²)y" - xy + λy = 0
with boundary conditions y(-1) = 0 and y(1) = 0, where X is a constant.
(a) Show that Chebychev's equation can be expressed in Sturm-Liouville form
d
· (py') + qy + Ary = 0,
dx
y(1) = 0, y(-1) = 0,
where p(x) = (1 = x²) 1/2, q(x) = 0 and r(x) = (1 − x²)-1/2
(b) Show that the eigenfunctions of the Sturm-Liouville equation are extremals of the
functional A[y], where
A[y]
=
I[y]
J[y]'
and I[y] and [y] are defined by
-
I [y] = √, (my² — qy²) dx
and
J[y] = [[", ry² dx.
Explain briefly how to use this to obtain estimates of the smallest eigenvalue >1.
1
(c) Let k > be a parameter. Explain why the functions y(x) = (1-x²) are suitable
4
trial functions for estimating the smallest eigenvalue. Show that the value of A[y]
for these trial functions is
4k2
A[y] =
=
4k - 1'
and use this to estimate the smallest eigenvalue \1.
Hint:
L₁ x²(1 − ²)³¹ dr =
1
(1 - x²)³ dx
(ẞ > 0).
2ẞ
You recieve a case of fresh Michigan cherries that weighs 8.2 kg. You will be making cherry pies. Each pie will require 1 3/4 pounds of pitted cherries. How many pies can be made from the case if the yield percent for cherries is 87
Chapter 38 Solutions
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
Ch. 38 - Prob. 1ARCh. 38 - Holes are to be drilled in the length of angle...Ch. 38 - Prob. 3ARCh. 38 - Prob. 4ARCh. 38 - For each of the exercises in the following table,...Ch. 38 - Prob. 6ARCh. 38 - Prob. 7ARCh. 38 - Prob. 8ARCh. 38 - The following problems require computations with...Ch. 38 - Prob. 10AR
Ch. 38 - Read measurements a-h on the enlarged 32nds and...Ch. 38 - Prob. 12ARCh. 38 - Prob. 13ARCh. 38 - Read measurements i-p on the enlarged 50ths and...Ch. 38 - Prob. 15ARCh. 38 - Prob. 16ARCh. 38 - Read the vernier caliper and height gage...Ch. 38 - Prob. 18ARCh. 38 - Prob. 19ARCh. 38 - Prob. 20ARCh. 38 - Prob. 21AR
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- Q/ show that the system: x = Y + x(x² + y²) y° = =x+y (x² + y²) 9 X=-x(x²+ y²) 9 X Y° = x - y (x² + y²) have the same lin car part at (0,0) but they are topologically different. Give the reason.arrow_forwardQ/ Find the region where ODES has no limit cycle: -X = X + X3 y=x+y+y'arrow_forwardB:Show that the function 4H(x,y)= (x² + y2)2-2((x² + y²) is a first integral of ODES: x=y + y(x² + y²) y=x+x (x² + y²) and sketch the stability of critical points and draw the phase portrait of system.arrow_forward
- A: Show that the ODES has no limit cycle in a region D and find this region: x=y-2x³ y=x+y-2y3 Carrow_forwardoptımızatıon theoryarrow_forwardQ3)A: Given H(x,y)= x²-x4 + y² as a first integral of an ODEs, find this ODES corresponding to H(x,y) and show the phase portrait by using Hartman theorem and by drawing graph of H(x,y)=c. Discuss the stability of critical points of the corresponding ODEs.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License