Why is the following situation impossible ? A piece of transparent material having an index of refraction n = 1.50 is cut into the shape of a wedge as shown in Figure P36.40. Both the top and bottom surfaces of the wedge are in contact with air. Monochromatic light of wavelength λ = 632.8 nm is normally incident from above, and the wedge is viewed from above. Let h = 1.00 mm represent the height of the wedge and ℓ = 0.500 m its length. A thin-film interference pattern appears in the wedge due to reflection from the top and bottom surfaces. You have been given the task of counting the number of bright fringes that appear in the entire length ℓ of the wedge. You find this task tedious, and your concentration is broken by a noisy distraction after accurately counting 5 000 bright fringes. Figure P36.40
Why is the following situation impossible ? A piece of transparent material having an index of refraction n = 1.50 is cut into the shape of a wedge as shown in Figure P36.40. Both the top and bottom surfaces of the wedge are in contact with air. Monochromatic light of wavelength λ = 632.8 nm is normally incident from above, and the wedge is viewed from above. Let h = 1.00 mm represent the height of the wedge and ℓ = 0.500 m its length. A thin-film interference pattern appears in the wedge due to reflection from the top and bottom surfaces. You have been given the task of counting the number of bright fringes that appear in the entire length ℓ of the wedge. You find this task tedious, and your concentration is broken by a noisy distraction after accurately counting 5 000 bright fringes. Figure P36.40
Solution Summary: The author explains that a given situation is impossible because the number of the fringes is less than the given number.
Why is the following situation impossible? A piece of transparent material having an index of refraction n = 1.50 is cut into the shape of a wedge as shown in Figure P36.40. Both the top and bottom surfaces of the wedge are in contact with air. Monochromatic light of wavelength λ = 632.8 nm is normally incident from above, and the wedge is viewed from above. Let h = 1.00 mm represent the height of the wedge and ℓ = 0.500 m its length. A thin-film interference pattern appears in the wedge due to reflection from the top and bottom surfaces. You have been given the task of counting the number of bright fringes that appear in the entire length ℓ of the wedge. You find this task tedious, and your concentration is broken by a noisy distraction after accurately counting 5 000 bright fringes.
Three slits, each separated from its neighbor by d = 0.06 mm, are illuminated by a coherent light source of
wavelength 550 nm. The slits are extremely narrow. A screen is located L = 2.5 m from the slits. The
intensity on the centerline is 0.05 W. Consider a location on the screen x = 1.72 cm from the centerline.
a) Draw the phasors, according to the phasor model for the addition of harmonic waves, appropriate for this
location.
b) From the phasor diagram, calculate the intensity of light at this location.
A Jamin interferometer is a device for measuring or for comparing the indices of refraction of gases. A beam
of monochromatic light is split into two parts, each of which is directed along the axis of a separate cylindrical
tube before being recombined into a single beam that is viewed through a telescope. Suppose we are given the
following,
•
Length of each tube is L = 0.4 m.
• λ= 598 nm.
Both tubes are initially evacuated, and constructive interference is observed in the center of the field of view. As
air is slowly let into one of the tubes, the central field of view changes dark and back to bright a total of 198
times.
(a) What is the index of refraction for air?
(b) If the fringes can be counted to ±0.25 fringe, where one fringe is equivalent to one complete cycle of
intensity variation at the center of the field of view, to what accuracy can the index of refraction of air be
determined by this experiment?
1. An arrangement of three charges is shown below where q₁ = 1.6 × 10-19 C, q2 = -1.6×10-19 C,
and q3 3.2 x 10-19 C.
2 cm
Y
93
92
91
X
3 cm
(a) Calculate the magnitude and direction of the net force on q₁.
(b) Sketch the direction of the forces on qi
Chapter 37 Solutions
Bundle: Physics for Scientists and Engineers, Technology Update, 9th Loose-leaf Version + WebAssign Printed Access Card, Multi-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.