PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 37, Problem 34P
To determine
The proof that the reduced mass is approximately equal to the mass of the lighter atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A proton with mass m1 and initial velocity v1 makes an atomic collision with another atom with mass 3m1 and initial velocity zero. If we have: Q= 1/3 k1And the proton leaves the initial path at an angle of 45 degrees, find the final velocity of the second mass.
First part is already answered but the process would still be appreciated.
A beam of helium-3 atoms (m 3.016 u) is incident on a
target of nitrogen-14 atoms (m = 14.003 u) at rest. Dur-
ing the collision, a proton from the helium-3 nucleus
passes to the nitrogen nucleus, so that following the col-
lision there are two atoms: an atom of "heavy hydro-
gen" (deuterium, m = 2.014 u) and an atom of oxygen-15
(m= 15.003 u). The incident helium atoms are moving at
a velocity of 6.346 × 106 m/s. After the collision, the deu-
terium atoms are observed to be moving forward (in the
same direction as the initial helium atoms) with a velocity
of 1.531 x 107 m/s. (a) What is the final velocity of the
oxygen-15 atoms? (b) Compare the total kinetic energies
before and after the collision..
www.
Chapter 37 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10P
Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43P
Knowledge Booster
Similar questions
- (a) Find the momentum of a 1.00109 kg asteroid heading towards the Earth at 30.0 km/s. (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that =1+(1/2)v2/c2 at low velocities.)arrow_forwardThe radius of a hydrogen nucleus is believed to be about 1.2 x 10-15 m. (a) If an electron rotates around the nucleus at that radius, what would be its speed according to the planetary model? (b) What would be the total mechanical energy? (c) Are these reasonable?arrow_forward(a) In the Bohr model of the atom, the ground-state electron in hydrogen has an orbital speed of 2190 km/s. What is its kinetic energy? (b) If you drop a 1.0-kg weight (about 2 lb) from a height of 1.0 m, how many joules of kinetic energy will it have when it reaches the ground? (c) Is it reasonable that a 30-kg child could run fast enough to have 100 J of kinetic energy?arrow_forward
- If the speed of electron in the first Bohr orbit of radius 0.5 A is 2.24 × 106 m/s, then the period of revolution of the electron in this orbit is, (a) 1.403 × 10-16 S (b) 2.403 x 10-16 S (c) 1.403 × 10-¹1 S (d) 2.403 x 10-¹¹ Sarrow_forwardB8arrow_forward(a) Show that the kinetic energy of a nonrelativistic particle can be written in terms of its momentum as KE =p2/2m. (b) Use the results of part (a) to find the minimum kinetic energy of a proton confined within a nucleus having a diameter of 1.0 × 10−15m.arrow_forward
- One-dimensional harmonic oscillators in equilibrium with a heat bath (a) Calculate the specific heat of the one-dimensional harmonic oscillator as a function of temperature (b) Plot the T -dependence of the mean energy per particle E/N and the specific heat c. Show that E/N → kT at high temperatures for which kT > hw In this limit the energy kT is large in comparison to hw , the separation between energy levels. Hint: expand the exponential function 1 ē = ħw + eBhwarrow_forwardA nuclear bomb at the instant of explosion may be approximated to a black- body of radius 0.3 m with a surface temperature of 107 K. Show that the bomb emits a power of 6.4 × 1020 w.arrow_forwardIn solid helium the spacing between atoms is about 3Å . Helium contains 2 protons and 2 neutrons, so the mass of a helium atom is 6.6×10−27 kg. What is the smallest possible energy of a helium atom in solid helium? What temperature (in Kelvin) does this energy correspond with? (Boltzmann's constant is kb=1.38×10−23 J/Karrow_forward
- In this problem you will consider the balance of thermal energy radiated and absorbed by a person. Assume that the person is wearing only a skimpy bathing suit of negligible area. As a rough approximation, the area of a human body may be considered to be that of the sides of a cylinder of length L=2.0mL=2.0m and circumference C=0.8mC=0.8m. For the Stefan-Boltzmann constant use σ=5.67×10−8W/m2/K4σ=5.67×10−8W/m2/K4. If the surface temperature of the skin is taken to be Tbody=30∘CTbody=30∘C, how much thermal power PrbPrbP_rb does the body described in the introduction radiate? Take the emissivity to be e=0.6e=0.6. Express the power radiated into the room by the body numerically, rounded to the nearest 10 W.arrow_forwardWhat is the maximum kinetic energy of an electron such that a collision between the electron and a stationary hydrogen atom in its ground state is definitely elastic?arrow_forwardCheck Your Understanding Would the result in Example 6.4 be different if the mass were not 1.0 kg g a tiny mass of 1.0 pg, and the amplitude of vibrations were 0.10 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning