Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 28P
To determine
The angle at which a detector must be placed to detect the scattered photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(4) (i) Light shining on a metal surface produces photoelectrons with a maximum kinetic energy of 2.0 eV. The light intensity is then doubled. Now what is the maximum kinetic energy of the photoelectrons, in eV?
(ii) The detector in an ordinary digital camera is made of silicon. This detector works by the photoelectric effect. The longest wavelength of light that an ordinary digital camera can detect has a wavelength of 1 micron (where 1 micron = 10^-6 m). What is the work function of silicon, in eV?
(iii) Infrared cameras don't use detectors made of silicon. For an infrared camera to detect infrared radiation with a wavelength of 22 microns, its detector must be made of a dierent material. What is the maximum possible work function of this material, in eV?
(c) The energy of an ultraviolet light is 3.28 eV.
(i) What is its wavelength? (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C).
(ii) Based on the de Broglie's hypothesis, determine the velocity of the electron. (Given: h=6.63✕10-34 Js ; me=9.11✕10-31 kg)
(5) The total power output from a star is 4.5 x 1026 W. Assuming that all the emitted radiation
has a wavelength λ = 550 nm, calculate the number of photons that are emitted per second.
Chapter 37 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (b) (i) Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 1031 kg and a charge of 1.602 x 10-19 J with a Kinetic energy of 135 eV. The value of the Planck's constant is equal to 6.63 * 10-34 Js. (ii) Assume that an electron is moving along the x-axis with a speed of 3.66 x 106 m/s and with a precision of 0.50%. Calculate the minimum uncertainty (as allowed by the uncertainty principle in quantum theory) with which the position of the electron along the X-axis simultaneously can be measured with the speed?arrow_forward(b) Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 10-31 kg and a charge of 1.602 x 10-19 J with a Kinetic energy of 110 eV. The value of the Planck’s constant is equal to 6.63 * 10-34 Js.arrow_forward(a) If the power output of a 650-kHz radio station is 50.0 kW, how many photons per second are produced? (b) If the radio waves are broadcast uniformly in all directions, find the number of photons per second per square meter at a distance of 100 km. Assume no reflection from the ground orabsorption by the air.arrow_forward
- (4) (a) What is the wavelength of an X-ray photon of energy 10.0 keV? (b) What is the wavelength of a gamma-ray photon of energy 1.00 MeV? (c) What is the range of energies of photons of visible light with wavelengths 350-700 nm?arrow_forward(3) A spectrometer used in a measurement of the Compton effect has a spectral resolution of Aλ/2 = 0.5%. Find the wavelength of the incident photons that would be required in order to resolve (a) Scattered photons at an angle of 38° (b) Scattered photons at an angle of 90° (c) Comparing parts (a) and (b), which measurement is easier, keeping in mind that it is harder to make higher energy photons? What factor can you think of that might make the measurement at 0= 90° harder than the measurement at 0= 38°?arrow_forward(i) Monochromatic light of frequency 6.0 × 1014 Hz is produced by a laser. The power emitted is 2.0 × 10-3 W. Estimate the number of photons emitted per second on an average by the source. (ii) Draw a plot showing the variation of photoelectric current versus the intensity of incident radiation on a given photosensitive surface.arrow_forward
- (i) Define the term ‘threshold frequency’ as used in photoelectric effect. (ii) Plot a graph showing the variation of photoelectric current as a function of anode potential for two light beams having the same frequency but different intensities I1 and I2 (I1 > I2 ).arrow_forward(i) How does one explain the emission of electrons from a photosensitive surface with the help of Einstein’s photoelectric equation? (ii) The work function of the following metals is given : Na = 2.75 eV, K = 2.3 eV, Mo = 4.17 eV and Ni 5.15 eV. Which of these metals will not cause photoelectric emission for radiation of wavelength 3300 A from a laser source placed 1 m away from these metals? What happens if the laser source is brought nearer and placed 50 cm away?arrow_forwardAfter a 0.8 mm x-ray photon scatters from a free electron, the electron recoils at 1.4 x 106 m/s. (a) What is the Compton shift in the photon's wavelength? (b) Through what angle is the photon scattered?arrow_forward
- (3) In order to study the atomic nucleus, we would like to observe the diffraction of particles whose de Broglie wavelength is about the same size as the nuclear diameter, about 14 fm for a heavy nucleus such as lead. What kinetic energy should we use if the diffracted particles are (a) electrons? (b) Neutrons? (c) Alpha particles (m = 4 u)?arrow_forwardAn x-ray light source of a wavelength of 1.28 E-12 m is shot at a piece of graphite. On the other side an x-ray is scattered at an angle of 15.0 degrees from its original path. Determine the wavelength of the scattered x-ray and then the velocity of the ejected electron.arrow_forward(a) If a photon and an electron each have the same energy of 20.0 eV, find the wavelength of each. (b) If a photon and an electron each have the same wavelength of 250 nm, find the energy of each. (c) You want to study an organic molecule that is about 250 nm long using either a photon or an electron microscope. Approximately what wavelength should you use and which probe, the electron or the photon, is likely to damage the molecule the least?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning