Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 37, Problem 28P
To determine
The characteristic rotational energy
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The moment of inertia of water molecule about an axis bisecting the HOH angle is1.91x10-47 kg m2. Its minimum angular momentum about that axis (other than zero) is ℏ. Inclassical terms, how many revolutions per second do the hydrogen atoms make about the axiswhen in that state? Calculate the rotational constant (cm-1) and bond length of H2O. Does the bondlength seem reasonable?
The characteristic rotational energy for a diatomic molecule consisting of two idential atoms of mass 14 u (unified mass units) is 3.68 e-4 eV. Calculate the separation distance between the two atoms.
Sub
The spacing between two adjacent lines in
the pure rotational spectrum of a diatomic
molecule is 20.0 cm ¹. Given KBT = 200 cm-¹
(at a specific temperature), calculate the
relative population of the J-6 level
O 1.6
O 3.8
O 2.7
O 2.4
Chapter 37 Solutions
Physics for Scientists and Engineers
Ch. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10P
Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43P
Knowledge Booster
Similar questions
- The measured density of a CsCl crystal is 3.988 g/cm3. What is the equilibrium separate distance of Cs+ and Cl- ions?arrow_forwardThe measured density of a KCl crystal is 1.984 g/cm3. What is the equilibrium separation distance of K+ and Cl- ions?arrow_forwardConsider the HCl molecule, which consists of a hydrogen atom of mass 1 u bound to a chlorine atom of mass 35 u. The equilibrium separation between the atoms is 0.128 nm, and it requires 0.15 eV of work to increase or decrease this separation by 0.01 nm. (a) Calculate the four lowest rotational energies (in eV) that are possible, assuming the molecule rotates rigidly. (b) Find the molecules spring constant and its classical frequency of vibration. (Hint: Recall that U=12Kx2.) (c) Find the two lowest vibrational energies and the classical amplitude of oscillation corresponding to each of these energies. (d) Determine the longest wavelength radiation that the molecule can emit in a pure rotational transition and in a pure vibrational transition.arrow_forward
- Determine the wavenumbers for the two lowest energy rotational excitations for trans- 3251°F4 H2 if the S-F bond distance is 1.74 Å and the S-H bond distance is 1.34 Å.arrow_forwardSuppose a pure Si crystal has 5 × 1028 atoms m-3. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Given that ni =1.5 × 1016 m-3.arrow_forwardA hypothetical NH molecule makes a rotational-level transition from l=3 to l=1 and gives off a photon of wavelength 1.800 nm in doing so. What is the seperation between the two atoms in this molecule if we model them as point masses? The mass of hydrogen 1.67 * 10^-27 kg, and the mass of nitrogen is 2.33 * 10^-26 kg.arrow_forward
- The equilibrium separation between the two ions in the KCl molecule is 0.267 nm. (a) Assuming that the K+ and Cl- ions are point particles, compute the electric dipole moment of the molecule. (b) Compute the ratio of your result in (a) to the measured electric dipole moment of 5.41 x 10-29 C*m. This ratio is known as the fractional ionic character of the molecular bond.arrow_forwardThe internuclear distance (bond length) of carbon monoxide molecule is 1.13 Å. Calculate the energy (in joules and eV) of this molecule in the first excited rotational level. Also calculate the angular velocity of the molecule. Given atomic masses of 12^C = 1.99x10^-26 kg; 16^O = 2.66x10^-26 kg.arrow_forwardFor an O2 molecule, the constant E is approximately 0.00018 eV. Estimate the rotational partition function for an O2 molecule at room temperature.arrow_forward
- A CO molecule starts in the vibrational and rotational ground state with k = 900 N/m. Calculate the energy of the CO molecule.arrow_forwardConsider a CO molecule that is initially in the ground state of n = 0, l = 0. If the energy of a vibrational transition from the n = 0 state to the n = 1 state in CO could instead be absorbed in a rotational transition, what would be the value of l for the final state?arrow_forwardA diatomic molecule has 18 x 105 eV of rotational energy in the I = 7 quantum state. What is its rotational energy in the I = 0 quantum state? %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning