FUND. OF PHYSICS FOR LSU WILEY+ NEXT GEN
11th Edition
ISBN: 9781119749295
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 37, Problem 28P
To determine
To find:
a) The velocity of the particle observed by observer attached to the frame
b) The velocity of the particle observed by observer attached to the frame
c) The velocity of the particle observed by observer attached to the frame
d) The velocity of the particle observed by observer attached to the frame
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
43. A mass må undergoes circular
motion of radius R on a hori-
zontal frictionless table, con-
nected by a massless string
through a hole in the table to
a second mass m² (Fig. 5.33).
If m₂ is stationary, find expres-
sions for (a) the string tension
and (b) the period of the circu-
lar motion.
m2
R
m₁
FIGURE 5.33 Problem 43
CH
70. A block is projected up an incline at angle 0. It returns to its initial
position with half its initial speed. Show that the coefficient of ki-
netic friction is μk = tano.
Passage Problems
A spiral is an ice-skating position in which the skater glides on one
foot with the other foot held above hip level. It's a required element
in women's singles figure-skating competition and is related to the
arabesque performed in ballet. Figure 5.40 shows Canadian skater
Kaetlyn Osmond executing a spiral during her medal-winning perfor-
mance at the 2018 Winter Olympics in Gangneung, South Korea.
77. From the photo, you can conclude
that the skater is
a. executing a turn to her left.
b. executing a turn to her right.
c. moving in a straight line out of
the page.
78. The net force on the skater
a. points to her left.
b. points to her right.
c. is zero.
79. If the skater were to execute the same
maneuver but at higher speed, the tilt
evident in the photo would be
a. less.
b. greater.
c. unchanged.
FIGURE 5.40 Passage
Problems 77-80
80. The tilt angle 0 that the skater's body
makes with the vertical is given ap-
proximately by 0 = tan¯¹(0.5). From this you can conclude…
Chapter 37 Solutions
FUND. OF PHYSICS FOR LSU WILEY+ NEXT GEN
Ch. 37 - A rod is to move at constant speed v along the x...Ch. 37 - Figure 37-16 shows a ship attached to reference...Ch. 37 - Reference frame S' is to pass reference frame S at...Ch. 37 - Figure 37-17 shows two clocks in stationary frame...Ch. 37 - Figure 37-18 shows two clocks in stationary frame...Ch. 37 - Sam leaves Venus in a spaceship headed to Mars and...Ch. 37 - The plane of clocks and measuring rods in Fig....Ch. 37 - The rest energy and total energy, respectively, of...Ch. 37 - Figure 37-20 shows the triangle of Fig 37-14 for...Ch. 37 - While on board a starship, you intercept signals...
Ch. 37 - Figure 37-21 shows one of four star cruisers that...Ch. 37 - The mean lifetime of stationary muons is measured...Ch. 37 - To eight significant figures, what is speed...Ch. 37 - You wish to make a round trip from Earth in a...Ch. 37 - Come back to the future. Suppose that a father is...Ch. 37 - ILW An unstable high-energy particle enters a...Ch. 37 - GO Reference frame S' is to pass reference frame S...Ch. 37 - The premise of the Planet of the Apes movies and...Ch. 37 - An electron of = 0.999 987 moves along the axis...Ch. 37 - SSM A spaceship of rest length 130 m races past a...Ch. 37 - A meter stick in frame S' makes an angle of 30...Ch. 37 - A rod lies parallel to the x axis of reference...Ch. 37 - The length of a spaceship is measured to be...Ch. 37 - GO A space traveler takes off from Earth and moves...Ch. 37 - A rod is to move at constant speed v along the x...Ch. 37 - GO The center of our Milky Way galaxy is about 23...Ch. 37 - Observer S reports that an event occurred on the x...Ch. 37 - SSM WWW In Fig. 37-9, the origins of the two...Ch. 37 - Inertial frame S' moves at a speed of 0.60c with...Ch. 37 - An experimenter arranges to trigger two flashbulbs...Ch. 37 - GO As in Fig. 37-9, reference frame S' passes...Ch. 37 - Relativistic reversal of events. Figures 37-25a...Ch. 37 - For the passing reference frames in Fig. 37-25,...Ch. 37 - ILW A clock moves along an x axis at a speed of...Ch. 37 - Bullwinkle in reference frame S' passes you in...Ch. 37 - In Fig. 37-9, observer S detects two flashes of...Ch. 37 - In Fig. 37-9, observer 5 detects two flashes of...Ch. 37 - SSM A particle moves along the x' axis of frame S'...Ch. 37 - Prob. 28PCh. 37 - Galaxy A is reported to be receding from us with a...Ch. 37 - Stellar system Q1 moves away from us at a speed of...Ch. 37 - SSM WWW ILW A spaceship whose rest length is 350 m...Ch. 37 - GO In Fig. 37-26a, particle P is to move parallel...Ch. 37 - GO An armada of spaceships that is 1.00 ly long as...Ch. 37 - A sodium light source moves in a horizontal circle...Ch. 37 - SSM A spaceship, moving away from Earth at a speed...Ch. 37 - Prob. 36PCh. 37 - Assuming that Eq. 37-36 holds, find how fast you...Ch. 37 - Figure 37-27 is a graph of intensity versus...Ch. 37 - SSM A spaceship is moving away from Earth at speed...Ch. 37 - How much work must be done to increase the speed...Ch. 37 - SSM WWW The mass of an electron is 9.109 381 88 ...Ch. 37 - Prob. 42PCh. 37 - How much work must be done to increase the speed...Ch. 37 - In the reaction p 19F 16O, the masses are mp =...Ch. 37 - In a high-energy collision between a cosmic-ray...Ch. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - GO The mass of a muon is 207 times the electron...Ch. 37 - GO As you read this page on paper or monitor...Ch. 37 - To four significant figures, find the following...Ch. 37 - ILW What must be the momentum of a particle with...Ch. 37 - Apply the binomial theorem Appendix E to the last...Ch. 37 - Prob. 53PCh. 37 - GO What is for a particle with a K = 2.00E0 and b...Ch. 37 - Prob. 55PCh. 37 - a The energy released in the explosion of 1.00 mol...Ch. 37 - Quasars are thought to be the nuclei of active...Ch. 37 - The mass of an electron is 9.109 381 88 1031 kg....Ch. 37 - GO An alpha particle with kinetic energy 7.70 MeV...Ch. 37 - Temporal separation between two events. Events A...Ch. 37 - Spatial separation between two events. For the...Ch. 37 - GO In Fig. 37-28a, particle P is to move parallel...Ch. 37 - Superluminal jets. Figure 37-29a shows the path...Ch. 37 - GO Reference frame S' passes reference frame S...Ch. 37 - Another approach to velocity transformations. In...Ch. 37 - Continuation of Problem 65. Use the result of part...Ch. 37 - Continuation of Problem 65. Let reference frame C...Ch. 37 - Figure 37-16 shows a ship attached to reference...Ch. 37 - Prob. 69PCh. 37 - An airplane has rest length 40.0 m and speed 630...Ch. 37 - SSM To circle Earth in low orbit, a satellite must...Ch. 37 - Prob. 72PCh. 37 - SSM How much work is needed to accelerate a proton...Ch. 37 - A pion is created in the higher reaches of Earths...Ch. 37 - SSM If we intercept an electron having total...Ch. 37 - Prob. 76PCh. 37 - A spaceship at rest in a certain reference frame S...Ch. 37 - Prob. 78PCh. 37 - SSM What is the momentum in MeV/c of an electron...Ch. 37 - The radius of Earth is 6370 km, and its orbital...Ch. 37 - A particle with mass m has speed c/2 relative to...Ch. 37 - An elementary particle produced in a laboratory...Ch. 37 - What are a K, b E, and c p in GeV/c for a proton...Ch. 37 - Prob. 84PCh. 37 - One cosmic-ray particle approaches northsouth axis...Ch. 37 - How much energy is released in the explosion of a...Ch. 37 - What potential difference would accelerate an...Ch. 37 - A Foron cruiser moving directly toward a Reptulian...Ch. 37 - In Fig. 37-35, three spaceships are in a chase....Ch. 37 - Space cruisers A and B are moving parallel to the...Ch. 37 - In Fig. 37-36, two cruisers fly toward a space...Ch. 37 - A relativistic train of proper length 200 m...Ch. 37 - Particle A with rest energy 200 MeV is at rest in...Ch. 37 - Figure 37-37 shows three situations in which a...Ch. 37 - Ionization measurements show that a particular...Ch. 37 - Prob. 96PCh. 37 - Prob. 97PCh. 37 - An astronaut exercising on a treadmill maintains a...Ch. 37 - A spaceship approaches Earth at a speed of 0.42c....Ch. 37 - Prob. 100PCh. 37 - In one year the United States consumption of...Ch. 37 - Quite apart from effects due to Earths rotational...Ch. 37 - Prob. 103P
Knowledge Booster
Similar questions
- Frictionless surfarrow_forward71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward
- 36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forwardPassage Problems Laptop computers are equipped with accelerometers that sense when the device is dropped and then put the hard drive into a protective mode. Your computer geek friend has written a program that reads the accel- erometer and calculates the laptop's apparent weight. You're amusing yourself with this program on a long plane flight. Your laptop weighs just 5 pounds, and for a long time that's what the program reports. But then the "Fasten Seatbelt" light comes on as the plane encounters turbu- lence. Figure 4.27 shows the readings for the laptop's apparent weight over a 12-second interval that includes the start of the turbulence. 76. At the first sign of turbulence, the plane's acceleration a. is upward. b. is downward. c. is impossible to tell from the graph. 77. The plane's vertical ac- celeration has its greatest magnitude a. during interval B. b. during interval C. c. during interval D. 78. During interval C, you can conclude for certain that the plane is Apparent…arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forward
- Ho propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON