Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36.3, Problem 36.2QQ
Using Figure 36.6 as a model, sketch the interference pattern from six slits.
Figure 36.6 Multiple-slit interference patterns. As N, the number of slits, is increased, the primary maxima (the tallest peaks in each graph) become narrower but remain fixed in position and the number of secondary maxima increases.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Light with wavelength i passes through a narrow slit of width w and is seen on a screen which
is located at a distance D in front of the slit. The first minimum of the diffraction pattern is at
distance d from the middle of the central maximum. Calculate the wavelength of light if D=2.5
VAD. Give your answer in nanometprs.
m, d=1 mm and w =
Answer:
Choose...
The light intensity vs. position graph of a double-slit experiment is shown below. The graph was made with helium-neon laser
light of wavelength 630 nm shined through two very narrow slits separated by a small distance. The slits were 2.0 meters away
from the probe. What is the path-length difference (from the two slits to the screen) when the probe is at position 9.0 mm, in nm?
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive
sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.
Lasilian
Position of probe (mm)
Light level
Figure 1 shows the viewing screen in a double-slit experiment with monochromatic light. Fringe C is the central maximum. The fringe separation is Δy
Suppose the wavelength of the light is 430 nm . How much farther is it from the dot on the screen in the center of fringe E to the left slit than it is from the dot to the right slit?
Chapter 36 Solutions
Physics for Scientists and Engineers
Ch. 36.2 - Which of the following causes the fringes in a...Ch. 36.3 - Using Figure 36.6 as a model, sketch the...Ch. 36.5 - One microscope slide is placed on top of another...Ch. 36 - Two slits are separated by 0.320 mm. A beam of...Ch. 36 - Why is the following situation impossible? Two...Ch. 36 - A laser beam is incident on two slits with a...Ch. 36 - In a Youngs double-slit experiment, two parallel...Ch. 36 - Light of wavelength 620 nm falls on a double slit,...Ch. 36 - Light with wavelength 442 nm passes through a...Ch. 36 - A student holds a laser that emits light of...
Ch. 36 - A student holds a laser that emits light of...Ch. 36 - Coherent light rays of wavelength strike a pair...Ch. 36 - In Figure P36.10 (not to scale), let L = 1.20 m...Ch. 36 - You are working in an optical research laboratory....Ch. 36 - You are operating a new radio telescope that has...Ch. 36 - In the double-slit arrangement of Figure P36.13, d...Ch. 36 - Monochromatic light of wavelength is incident on...Ch. 36 - Prob. 15PCh. 36 - Show that the distribution of intensity in a...Ch. 36 - Green light ( = 546 nm) illuminates a pair of...Ch. 36 - Monochromatic coherent light of amplitude E0 and...Ch. 36 - A material having an index of refraction of 1.30...Ch. 36 - A soap bubble (n = 1.33) floating in air has the...Ch. 36 - A film of MgF2 (n = 1.38) having thickness 1.00 ...Ch. 36 - An oil film (n = 1.45) floating on water is...Ch. 36 - When a liquid is introduced into the air space...Ch. 36 - You are working as an expert witness for an...Ch. 36 - Astronomers observe the chromosphere of the Sun...Ch. 36 - A lens made of glass (ng = 1.52) is coated with a...Ch. 36 - Mirror M1 in Figure 36.13 is moved through a...Ch. 36 - Radio transmitter A operating at 60.0 MHz is 10.0...Ch. 36 - In an experiment similar to that of Example 36.1,...Ch. 36 - In the What If? section of Example 36.2, it was...Ch. 36 - Two coherent waves, coming from sources at...Ch. 36 - Raise your hand and hold it flat. Think of the...Ch. 36 - In a Youngs double-slit experiment using light of...Ch. 36 - Review. A flat piece of glass is held stationary...Ch. 36 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 36 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 36 - In a Newtons-rings experiment, a plano-convex...Ch. 36 - Measurements are made of the intensity...Ch. 36 - A plano-concave lens having index of refraction...Ch. 36 - Why is the following situation impossible? A piece...Ch. 36 - Interference fringes are produced using Lloyds...Ch. 36 - A plano-convex lens has index of refraction n. The...Ch. 36 - Prob. 43APCh. 36 - Prob. 44APCh. 36 - Astronomers observe a 60.0-MHz radio source both...Ch. 36 - Prob. 46CPCh. 36 - Our discussion of the techniques for determining...Ch. 36 - The condition for constructive interference by...Ch. 36 - Both sides of a uniform film that has index of...Ch. 36 - Slit 1 of a double-slit is wider than slit 2 so...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Young's double-slit experiment is set up so that the screen is positioned 1.43 m from the double slits. If the spacing between the two slits is 43.2 um and the distance between the central order bright spot and the bright spots to either side is 1.51 cm, then what is the wavelength for the light source (in nm)? Your Answer:arrow_forwardWhen illuminating the observation screen directly, without any slits, you notice that the laser has a spread, meaning that the light on the screen becomes larger as you increase the distance between you and the screen. Determine the angular spread of the 710.5 nm wavelength laser beam if the circular aperture of the laser is 0.7 mm in diameter. Enter your answer in milli-rad with 2 decimal place precisionarrow_forwardA physician wants to shine a therapeutic Nd YAG laser through a small slit onto a patient who is 37 cm behind the slit. What maximum size slit could she use so that there would be no intensity minima in the light that falls on the patient? The infrared wavelength of the YAG laser is 1064 nm. PLEASE PLEASE draw the diagram/situation and define variables THank you!!arrow_forward
- Q. In a biprism experiment, the separation of the slits is halved and the distance between the slits and the screen is doubled. How is the fringe width affected?arrow_forwardYou shine light with an unknown wavelength through two slits that are an unknown distance, d, apart. You put the screen a distance, D = 41 cm, behind the slit plate, and find that the width of the central maximum is Ayo = 1.43 cm. Use the small-angle approximation to obtain the symbolic expressions. (a) Write symbolic expressions for each of the following in terms of 2, d, D (and integers) as needed. 01min = y1min Ayo = (b) Write a symbolic expression for the ratio of 2/d, in terms of the given variables, Ayo, and D, then calculate its numeric value.arrow_forwardCoherent light of wavelength 680 nm falls on two very small slits and produces an interference pattern on a screen 2.6 m away. On this screen, the third-order bright fringe is 38 mm from the central bright fringe. What is the slit separation? Sketch the situation, defining all variables. Please sketch the situation, this is most important.arrow_forward
- How the data were collected:Align the light source (laser diode: 650 nm on label) on an optical bench. Setup a white screen that is parallel with respect to the slit disk’s orientation. Measure the distance between the slit disk and the screen (this serves as the slit-to-screen distance d). Record the position of dark fringes on the screen using a pen or a pencil.Measure the distance ∆y1 between the first-order (m = ±1) minima and record this distance in Tables W1 and W2. Also measure the distance ∆y2 between the second-order (m = ±2) minima and record it in Table W2. Divide the distances between side orders by two (2) to get the distances from the center of the pattern to the first and second order minima (ym = 1 2 ∆ym). Record these values of ym in Tables W1 and W2.The data from the experiment is: Single Slit Diffraction Experiment Data Slit Width, a (mm) Δy_1 (cm) Δy_2 (cm) Δy_3 (cm) 0.02 2.80 0.04 1.00 1.90 0.08 0.45 0.90 1.45 0.16 0.20 0.50 0.70 Source-to-Slit…arrow_forwardA. The light intensity vs. position graph of a double-slit experiment is shown below. The graph was made with helium–neon laser light of wavelength 640 nm shined through two very narrow slits separated by a small distance. The slits were 2.0 meters away from the probe. What is the distance between any two bright fringes, in mm? B. The light intensity vs. position graph of a double-slit experiment is shown below. The graph was made with helium–neon laser light of wavelength 640 nm shined through two very narrow slits separated by a small distance. The slits were 2.0 meters away from the probe. What is the distance between any two dark fringes, in mm? C. The light intensity vs. position graph of a double-slit experiment is shown below. The graph was made with helium–neon laser light of wavelength 640 nm shined through two very narrow slits separated by a small distance. The slits were 2.0 meters away from the probe. What is the spacing between the two slits, in mm?arrow_forwardIn a double slit interference experiment, the two slits are 0.3 mm apart. A laser beam of wavelength 621 nm, passes through the slits and an interference pattern is made on a screen that is 4.34 m away from the slits. Calculate the distance between the central bright fringe and the first side bright fringe. Write your answer in cm.arrow_forward
- There is a 520 nm laser beam that is going through two narrow slits that creates a (interference) pattern at a wall that is 1.55 m from the slits. Calculate: a. Width of the central diffraction maximum on the wall is 4.27 cm. What is its angular width? (in radians) b. Use the radians calculated earlier to calculate the slit width in microns c. Distance of the 3rd diffraction minimum from the center of the patter on the wall d. Index numbers for difference orders where the interference maximum would be missing if the slit separation is 250µm e. If the slits remain at this width, what would the separate distance be if the 6th interference minimum overlapped with the 2nd diffraction minimumarrow_forwardConsider a variety of colors of visible light (say 400 nm to 700 nm) falling onto a pair of slits. a) What is the smallest separation (in nanometers) between two slits that will produce a second-order maximum for some visible light? b) What is the smallest separation (in nanometers) between two slits that will produce a second-order maximum for all visible light?arrow_forwardIf the width of the slit is increased in a single slit diffraction experiment, the light intensity pattern becomes laser will be Given a constant slit width, the light intensity pattern from a 700 nm than the pattern from a 400 nm laser. Select one: SMIV IMIIW b. narrower, wider c. wider, narrower d. narrower, narrower e. wider, widerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY