Concept explainers
CP In a laboratory, light from a particular spectrum line of helium passes through a diffraction grating and the second-order maximum is at 18.9° from the center of the central bright fringe. The same grating is then used for light from a distant galaxy that is moving away from the earth with a speed of 2.65 × 107 m/s. For the light from the galaxy, what is the angular location of the second-order maximum for the same spectral line as was observed in the lab? (See Section 16.8.)
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
An Introduction to Thermal Physics
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
The Cosmic Perspective (8th Edition)
Essential University Physics: Volume 1 (3rd Edition)
- X-rays incident on a crystal with planes of atoms located 0.378 nm apart produce a diffraction pattern in which a first-order maximum is observed at an angle of 14.2. a. What is the wavelength of the X-rays incident on the crystal? b. How many orders are visible in the diffraction pattern?arrow_forwardIn Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forwardTo save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- The structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardWhat is the radius of the beam of an argon laser with wavelength 454.6 nm when viewed 50.0 km away from the laser if the lasers aperture has a radius of 3.00 mm?arrow_forwardAstronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the H line. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is held at a constant temperature. (a) Find the minimum value of d that produces maximum transmission of perpendicular H light if the dielectric has an index of refraction of 1.378. (b) What If? If the temperature of the filter increases above the normal value, increasing its thickness, what happens to the transmitted wavelength? (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light.arrow_forward
- The movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forward(a) What is the minimum angular spread of a 633-nm wavelength He-Ne laser beam that is originally 1.00 mm in diameter? (b) If this laser is aimed at a mountain cliff 15.0 km away, how big will the illuminated spot be? (c) How big a spot would be illuminated on the moon, neglecting atmospheric effects? (This might be done to hit a corner reflector to measure the round-trip time and, hence, distance.)arrow_forwardAngel is experimenting with a diffraction grating of unknown spacing. He is looking to determine the wavelength of the light in the emission spectrum of a gas and finds that a light having a known wavelength of 602.4nm is deflected by 42.1 ° away from the central maximum in the second order by this grating. Light of the wavelength to be measured is deflected by 45.7° away from the central maximum in the second order. What is the wavelength of this light in nanometers? Please give your answer as a whole number.arrow_forward
- An oil drop of volume 0.2 c.c. is dropped on the surface of a tank of water of area 1 sq. meter. The film spreads uniformly over the surface and white light which is incident normally is observed through a spectrometer. The spectrum is seen to contain one dark band whose centre has wavelength 5.5 x 10 cm in air. Find the refractive index of. Moil.arrow_forwardWhen an x-ray beam is scattered off the planes of a crystal, the scattered beam creates an interference pattern. This phenomenon is called Bragg scattering. For an observer to measure an interference maximum, two conditions have to be satisfied: 1. The angle of incidence has to be equal to the angle of reflection. 2. The difference in the beam's path from a source to an observer for neighboring planes has to be equal to an integer multiple of the wavelength; that is, 2d sin(0) = mx for m = 1, 2, .... The path difference 2d sin(0) can be determined from the diagram (Figure 1). The second condition is known as the Bragg condition. Figure 1 of 1 d sine d sine Review nstants Part A An x-ray beam with wavelength 0.260 nm is directed at a crystal. As the angle of incidence increases, you observe the first strong interference maximum at an angle 20.5 °. What is the spacing d between the planes of the crystal? Express your answer in nanometers to four significant figures. VE ΑΣΦ ? d = nm…arrow_forwardA layer of oil, with a refractive index of 1.40798, exactly 1 mm thick, floats on water. Light of vacuum wavelength 632.800 nm, emitted by a stabilized He-Ne laser, is reflected at normal incidence by the oil. Question 1 1 pts The index of refraction of the oil varies slightly with the vacuum wavelength of the light. Find this altered wavelength in nm: Question 2 1 pts How many wavelengths are contained in the light wave passing back and forth through the oil? (Hint: the reflected wave is shifted by X/2.) Please enter your answer as a whole number. Question 3 1 pts Does the light reflected from the two surfaces of the oil interfere constructively or destructively? Destructively O Constructivelyarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax