Concept explainers
You unconsciously estimate the distance to an object from the angle it subtends in your field of view. This angle θ in radians is related to the linear height of the object h and to the distance d by θ = h/d. Assume yon are driving a car and another car, 1.50 m high, is 24.0 m behind you. (a) Suppose your car has a flat passenger-side rearview mirror, 1.55 m from your eyes. How far from your eyes is the image of the car following you? (b) What angle does the image subtend in your field of view? (c) What If? Now suppose your car has a convex rearview mirror with a radius of curvature of magnitude 2.00 m (as suggested in Fig. 35.15). How far from your eyes is the image of the car behind you? (d) What angle does the image subtend at your eyes? (e) Based on its angular size, how far away does the following car appear to be?
(a)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
The rear view mirror is flat plane mirror and for the case of plane mirror the object distance is same as the image distance. Therefore the image distance for the following car is same as the car itself.
Hence, the distance of the car from observer eyes as seen through the flat rear view side mirror is,
Here,
Substitute
Conclusion:
Therefore, the image of the car form the observer’s eye is at distance of
(b)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the angle subtended by the object,
Here,
For the case of plane mirrors the object height and image height are equal and object distance and image distance are equal. Hence, to find the angle subtended by the image of the following car
Substitute
Conclusion:
Therefore, the angle subtended is
(c)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the image distance form a convex mirror for a given object is
Here,
Substitute
Negative
The image distance is negative because the image is formed behind the mirror. Therefore the image distance from the observer’s eye is,
Here,
Substitute
Conclusion:
Therefore, the image of the following car is at
(d)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
From Equation (2) formula to calculate the angle subtended by the image,
Here,
For the case of convex mirrors the object height and image height are not equal.
Formula to calculate the image height is,
Here,
Substitute
From equation (6) and equation (9) respectively, substitute
Conclusion:
Therefore, the angle subtended is
(e)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the angle subtended by the image,
Here,
Substitute
Conclusion:
Therefore, the image appears to be
Want to see more full solutions like this?
Chapter 36 Solutions
Bundle: Physics for Scientists and Engineers, Technology Update, 9th Loose-leaf Version + WebAssign Printed Access Card, Multi-Term
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning