
Concept explainers
You unconsciously estimate the distance to an object from the angle it subtends in your field of view. This angle θ in radians is related to the linear height of the object h and to the distance d by θ = h/d. Assume yon are driving a car and another car, 1.50 m high, is 24.0 m behind you. (a) Suppose your car has a flat passenger-side rearview mirror, 1.55 m from your eyes. How far from your eyes is the image of the car following you? (b) What angle does the image subtend in your field of view? (c) What If? Now suppose your car has a convex rearview mirror with a radius of curvature of magnitude 2.00 m (as suggested in Fig. 35.15). How far from your eyes is the image of the car behind you? (d) What angle does the image subtend at your eyes? (e) Based on its angular size, how far away does the following car appear to be?
(a)

Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
The rear view mirror is flat plane mirror and for the case of plane mirror the object distance is same as the image distance. Therefore the image distance for the following car is same as the car itself.
Hence, the distance of the car from observer eyes as seen through the flat rear view side mirror is,
Here,
Substitute
Conclusion:
Therefore, the image of the car form the observer’s eye is at distance of
(b)

Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the angle subtended by the object,
Here,
For the case of plane mirrors the object height and image height are equal and object distance and image distance are equal. Hence, to find the angle subtended by the image of the following car
Substitute
Conclusion:
Therefore, the angle subtended is
(c)

Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the image distance form a convex mirror for a given object is
Here,
Substitute
Negative
The image distance is negative because the image is formed behind the mirror. Therefore the image distance from the observer’s eye is,
Here,
Substitute
Conclusion:
Therefore, the image of the following car is at
(d)

Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
From Equation (2) formula to calculate the angle subtended by the image,
Here,
For the case of convex mirrors the object height and image height are not equal.
Formula to calculate the image height is,
Here,
Substitute
From equation (6) and equation (9) respectively, substitute
Conclusion:
Therefore, the angle subtended is
(e)

Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the angle subtended by the image,
Here,
Substitute
Conclusion:
Therefore, the image appears to be
Want to see more full solutions like this?
Chapter 36 Solutions
Physics for Scientists and Engineers
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





