Physics Laboratory Manual
4th Edition
ISBN: 9781133950639
Author: David Loyd
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 36, Problem 2PLA
For an inductor in a series alternating current circuit, the phase relationship between the current in the inductor and the voltage across the inductor is (a) the current leads the voltage by 90°; (b) the voltage leads the current by 90°; (c) the current is in phase with the voltage; (d) the current is at some phase angle ϕ relative to the voltage (ϕ is dependent on the circuit parameters).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
charge and the current (i) is zero, then P= 0. If q =0 at time t
=0, then =±n/2.
Example:
A 300-V dc power supply is used to charge a 25-µF capacitor. After the capacitor is fully charged, it is disconnected from
the power supply and connected across a 10-mH inductor. The resistance in the circuit is negligible. (a) Find the frequency
and period of oscillation of the circuit. (b) Find the capacitor charge and the circuit current 1.2 ms after the inductor and
capacitor are connected. Then find for the magnetic and electric energies (c) at and (d) at t = 1.2 ms.
Given:
C = 25 x 106 F
L = 10 x 103 H
t = 1.2 x 103 s
(c) Solving for magnetic (UB) and electric (UE) energies
at time t =0.
Solution:
(7.5 x 10-3 C)?
(a) Solving for angular frequency (w)and period (T)
Ug =Li? = 0
Ug =
2C
- 1.1 J
2(25 x 10-6 F)
1
= 2.03 x 10° rad/s
(10 x 10-3H)(25 x 10¬°F)
(d) Solving for magnetic (UB) and electric (UE)
energies at time t =1.2 ms.
2. 03 х 103 Рad
Ug = }Li² = }(10 × 10-3 H)(-10 A)² = 0.5 J
f
= 320…
An inductor is connected across a capacitor whose capacitance can be varied by turning a knob.We wish to make the frequency of oscillation of this LC circuit vary linearly with the angle of rotation of the knob, going from 2 * 10^5 to 4 * 105 Hz as the knob turns through 180°. If L =1.0 mH, plot the required capacitance C as a function of the angle of rotation of the knob.
In a dc circuit, inductance determines how the current changes and not the final value of the
current.
Chapter 36 Solutions
Physics Laboratory Manual
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an RLC series circuit, can the voltage measured across the capacitor be greater than the voltage of the source? Answer the same question for the voltage across the inductor.arrow_forwardIn Figure 14.12, =12V , L = 20 mH, and R=5.0. Determine (a) the time constant of the circuit, (b) the initial current through the resistor, (C) the final current through the resistor, (d) the current through the resistor when t=2L , and (e) the voltages across the inductor and the resistor when t=2L .arrow_forwardCan a circuit e1eent have both capacitance and inductance?arrow_forward
- An inductor and a resistor are connected in series across an AC generator, as shown in Figure CQ21.16. Immediately after the switch is closed, which of the following statements is true? (a) The current is V/R. (b) The voltage across the inductor is zero. (c) The current in the circuit is zero. (d) The voltage across the resistor is V. (e) The voltage across the inductor is half its maximum value. Figure CQ21.16arrow_forwardSuppose a coil has a self-inductance of 20.0 H and a resistance of 200 . What (a) capacitance and (b) resistance must be connected in series with the coil to produce a circuit that has a resonant frequency of 100 Hz and a Q of 10?arrow_forwardAn RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forward
- In the circuit shown below, S1is opened and S2is dosed simultaneously. Determine (a) the frequency of the resulting oscillations, (b) the maximum charge on the capacitor, (c) the maximum current through the inductor, and (d) the electromagnetic energy of the oscillating circuit.arrow_forwardReview. The voltage phasor diagram for a certain series RLC circuit is shown in Figure P33.59. The resistance of the circuit is 75.0 , and the frequency is 60.0 Hz. Find (a) the maximum voltage Vmax, (b) the phase angle , (c) the maximum current, (d) the impedance, (e) the capacitance and (f) the inductance of the circuit, and (g) the average power delivered to the circuit.arrow_forwardWhen a camera uses a flash, a fully charged capacitor discharges through an inductor. In what time must the 0.100-A current through a 2.00-mH inductor be switched on or off to induce a 500-V emf?arrow_forward
- A step-up transformer is designed so that the output of its secondary winding is 2000 V(rms) when the primary winding is connected to a 110-V (rms) line voltage, (a) If there are 100 turns in the primary winding, how many turns are there in the secondary winding? (b) If a resistor connected across the secondary winding draws an rms current of 0.75 A. what is the current in die primary winding?arrow_forwardThe current I(t) through a 5.0-mH inductor varies with time, as shown below. The resistance of the inductor is 5.0 . Calculate the voltage across the inductor at t = 2.0 ms, r = 4.0 ms, and t = 8.0 ms.arrow_forwardFind the reactances of the following capacitors and inductors in ac circuits with the given frequencies in each case: (a) 2-mH inductor with a frequency 60-Hz of the ac circuit; (b) 2-mM Inductor with a frequency 600-Hz of the ac circuit; (C) 20-mM inductor with a frequency 6-Hz of the ac circuit; (d) 20-mM inductor with a frequency 60-Hz of the ac circuit; (e) 2-mF capacitor with a frequency 60-Hz of the ac circuit; and (f) 2-mF capacitor with a frequency 600-Hz of the AC circuit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY