Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 36, Problem 1P

Two slits are separated by 0.320 mm. A beam of 500-nm light strikes the slits, producing an interference pattern. Determine the number of maxima observed in the angular range −30.0° < θ < 30.0°.

Expert Solution & Answer
Check Mark
To determine

The number of maxima observed in angular range 30.0°<θ<30.0° .

Answer to Problem 1P

The number of maxima observed in the angular range 30.0°<θ<30.0° is 641 .

Explanation of Solution

Given info: The two slits are separated by a distance of 0.320mm and the wavelength of beam is 500nm .

The diagram is shown as

Physics for Scientists and Engineers with Modern Physics, Chapter 36, Problem 1P , additional homework tip  1

Figure 1

Consider there are n fringes (bright and dark) of width x on one side of the central bright.

The formula to calculate the interference is as,

dsinθ=nλ (1)

Here,

n is the order.

λ is the wavelength.

d is the separation between the slits.

Rearrange the above formula to find n ,

dsinθ=nλn=dsinθλ

Substitute 0.320nm for d , 30° for θ , 500nm for λ in the above formula as,

n=dsinθλ=(0.320nm×103m1mm)sin30°(500nm×109m1nm)=(0.320nm×103m1mm)2(500nm×109m1nm)=320 Physics for Scientists and Engineers with Modern Physics, Chapter 36, Problem 1P , additional homework tip  2

The approximate value of n is 320.5 .

The maxima are used for bright fringe and minima for dark fringe. Thus, the total number of fringes (bright and dark) in the angular separation from 30° to 30° is 2×320.5 that is 641 .

Conclusion:

Therefore, the number of maxima observed in the angular range 30.0°<θ<30.0° is 641

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?
Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field of strength B. The field is pointing directly up the page in the plane of the page. The loop is oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the normal vector for the loop is always in the plane of the page!). In the illustrations below the magnetic field is shown in red and the current through the current loop is shown in blue. The loop starts out in orientation (i) and rotates clockwise, through orientations (ii) through (viii) before returning to (i). (i) Ø I N - - I N - (iii) (iv) (v) (vii) (viii) a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector μ of the current loop and indicate whether the torque on the dipole due to the magnetic field is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the loop experience the maximum magnitude of torque? [Hint: Use the…
Please help with calculating the impusle, thanks! Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse: 1.Measure the weight of the balls and determine their mass. Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Second

Chapter 36 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY