Concept explainers
Monochromatic coherent light of amplitude E0 and angular frequency ω passes through three parallel slits, each separated by a distance d from its neighbor. (a) Show that the time-averaged intensity as a function of the angle θ is
(b) Explain how this expression describes both the primary and the secondary maxima. (c) Determine the ratio of the intensities of the primary and secondary maxima. Hint: See Problem 16.
(a)
To show: The time averaged intensity as a function of angle
Answer to Problem 18P
The time averaged intensity as a function of angle
Explanation of Solution
Given info: The amplitude of monochromatic light is
The amplitude of the monochromatic light is,
Here,
The total amplitude of monochromatic light is,
Substitute
Apply the trigonometric identity to the above expression as,
Apply the trigonometric identity to the above expression as,
Add the above result to
As it is known that intensity of monochromatic light is directly proportional to the the square of the electric field that is,
Here,
The resultant field is obtained by square the above expression as,
Substitute
Conclusion:
Thus, the time averaged intensity as a function of angle
(b)
The way in which the expression describes both the primary and secondary maxima.
Answer to Problem 18P
The expression describes both the primary and secondary maxima.
Explanation of Solution
Given info: The amplitude of monochromatic light is
From the above expression obtained in part (a), the minimum interference is obtained when
Conclusion:
Thus, the expression describes both the primary and secondary maxima.
(c)
The ratio of the intensities of the primary and secondary maxima.
Answer to Problem 18P
The ratio of the intensities of the primary and secondary maxima is
Explanation of Solution
Given info: The amplitude of monochromatic light is
Consider the amplitude of the monochromatic light is,
The total amplitude of monochromatic light is,
Substitute
Apply the trigonometric identity to the above expression as,
Apply the trigonometric identity to the above expression as,
Add the above result to
As it is known that intensity of monochromatic light is directly proportional to the square of the electric field that is,
Here,
The resultant field is obtained by square the above expression as,
Substitute
The expression for the intensity for primary maxima is,
The expression for the intensity for secondary maxima is,
Take the ratio of the above two expression as,
Conclusion:
Therefore, the ratio of the intensities of the primary and secondary maxima is
Want to see more full solutions like this?
Chapter 36 Solutions
Physics for Scientists and Engineers with Modern Physics
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill