Calculus : The Classic Edition (with Make the Grade and Infotrac)
Calculus : The Classic Edition (with Make the Grade and Infotrac)
5th Edition
ISBN: 9780534435387
Author: Earl W. Swokowski
Publisher: Brooks/Cole
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3.6, Problem 1E
To determine

To calculate y , in terms of x , where

  y=u2;    and  u=x34

Expert Solution & Answer
Check Mark

Answer to Problem 1E

  y=6x2(x34)

Explanation of Solution

Given:

  y=u2;    and  u=x34

Concept Used:

  • Chain rule of differentiation is: ddxf[g(x)]=ddgf(g)dgdx , where g is a differentiable function at x and f is a differentiable function at g(x)
  • Power rule of differentiation formula
  •   ddxxn=nxn1

Calculation:

To calculate y , in terms of x , where

  y=u2;    and  u=x34

First, put value of u in y as

  y=(x34)2

Now, using chain rule of differentiation differentiate above, as

  ddxy=ddx( x 34)2y=2(x34)ddx(x34)y=2(x34)(d dxx3d dx4)y=2(x34)(3x20)y=6x2(x34)

Hence,

  y=6x2(x34)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. A bicyclist is riding their bike along the Chicago Lakefront Trail. The velocity (in feet per second) of the bicyclist is recorded below. Use (a) Simpson's Rule, and (b) the Trapezoidal Rule to estimate the total distance the bicyclist traveled during the 8-second period. t 0 2 4 6 8 V 10 15 12 10 16 2. Find the midpoint rule approximation for (a) n = 4 +5 x²dx using n subintervals. 1° 2 (b) n = 8 36 32 28 36 32 28 24 24 20 20 16 16 12 8- 4 1 2 3 4 5 6 12 8 4 1 2 3 4 5 6
= 5 37 A 4 8 0.5 06 9
Consider the following system of equations, Ax=b : x+2y+3z - w = 2 2x4z2w = 3 -x+6y+17z7w = 0 -9x-2y+13z7w = -14 a. Find the solution to the system. Write it as a parametric equation. You can use a computer to do the row reduction. b. What is a geometric description of the solution? Explain how you know. c. Write the solution in vector form? d. What is the solution to the homogeneous system, Ax=0?

Chapter 3.6 Solutions

Calculus : The Classic Edition (with Make the Grade and Infotrac)

Ch. 3.6 - Prob. 11ECh. 3.6 - Prob. 12ECh. 3.6 - Prob. 13ECh. 3.6 - Prob. 14ECh. 3.6 - Prob. 15ECh. 3.6 - Prob. 16ECh. 3.6 - Prob. 17ECh. 3.6 - Prob. 18ECh. 3.6 - Prob. 19ECh. 3.6 - Prob. 20ECh. 3.6 - Prob. 21ECh. 3.6 - Prob. 22ECh. 3.6 - Prob. 23ECh. 3.6 - Prob. 24ECh. 3.6 - Prob. 25ECh. 3.6 - Prob. 26ECh. 3.6 - Prob. 27ECh. 3.6 - Prob. 28ECh. 3.6 - Prob. 29ECh. 3.6 - Prob. 30ECh. 3.6 - Prob. 31ECh. 3.6 - Prob. 32ECh. 3.6 - Prob. 33ECh. 3.6 - Prob. 34ECh. 3.6 - Prob. 35ECh. 3.6 - Prob. 36ECh. 3.6 - Prob. 37ECh. 3.6 - Prob. 38ECh. 3.6 - Prob. 39ECh. 3.6 - Prob. 40ECh. 3.6 - Prob. 41ECh. 3.6 - Prob. 42ECh. 3.6 - Prob. 43ECh. 3.6 - Prob. 44ECh. 3.6 - Prob. 45ECh. 3.6 - Prob. 46ECh. 3.6 - Prob. 47ECh. 3.6 - Prob. 48ECh. 3.6 - Prob. 49ECh. 3.6 - Prob. 50ECh. 3.6 - Prob. 51ECh. 3.6 - Prob. 52ECh. 3.6 - Prob. 53ECh. 3.6 - Prob. 54ECh. 3.6 - Prob. 55ECh. 3.6 - Prob. 56ECh. 3.6 - Prob. 57ECh. 3.6 - Prob. 58ECh. 3.6 - Prob. 59ECh. 3.6 - Prob. 60ECh. 3.6 - Prob. 61ECh. 3.6 - Prob. 62ECh. 3.6 - Prob. 63ECh. 3.6 - Prob. 64ECh. 3.6 - Prob. 65ECh. 3.6 - Prob. 66ECh. 3.6 - Prob. 67ECh. 3.6 - Prob. 68ECh. 3.6 - Prob. 69ECh. 3.6 - Prob. 70ECh. 3.6 - Prob. 71ECh. 3.6 - Prob. 72ECh. 3.6 - Prob. 73ECh. 3.6 - Prob. 74ECh. 3.6 - Prob. 75ECh. 3.6 - Prob. 76ECh. 3.6 - Prob. 77ECh. 3.6 - Prob. 78ECh. 3.6 - Prob. 79ECh. 3.6 - Prob. 80ECh. 3.6 - Prob. 81ECh. 3.6 - Prob. 82ECh. 3.6 - Prob. 83ECh. 3.6 - Prob. 84ECh. 3.6 - Prob. 85ECh. 3.6 - Prob. 86ECh. 3.6 - Prob. 87ECh. 3.6 - Prob. 88ECh. 3.6 - Prob. 89ECh. 3.6 - Prob. 90ECh. 3.6 - Prob. 91ECh. 3.6 - Prob. 92E
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY