Concept explainers
Monochromatic
(a)

Answer to Problem 14P
Explanation of Solution
Given info: The separation of the slit is
The formula to calculate the position of the
Here,
Substitute
Conclusion:
Therefore, the position of the
(b)

Answer to Problem 14P
Explanation of Solution
Given info: The separation of the slit is
The formula to calculate the tangent of the angle is,
Here,
Substitute
Conclusion:
Therefore, the tangent of the angle of the first-order bright fringe with respect to the point midway between the slits to the center of the central maximum is
(c)

Answer to Problem 14P
Explanation of Solution
Given info: The separation of the slit is
The formula to calculate the tangent of the angle is,
Substitute
The formula to calculate the wavelength is,
Here,
Substitute
Conclusion:
Therefore, the wavelength of the light is
(d)

Answer to Problem 14P
Explanation of Solution
Given info: The separation of the slit is
The formula to calculate the angle of the
Substitute
Conclusion:
Therefore, the angle of the
(e)

Answer to Problem 14P
Explanation of Solution
Given info: The separation of the slit is
The formula to calculate the position of the
Substitute
Conclusion:
Therefore, the position of the
(f)

Answer to Problem 14P
Explanation of Solution
Given info: The separation of the slit is
The difference in the position of the
Conclusion:
Therefore, the answer to part
Want to see more full solutions like this?
Chapter 36 Solutions
PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





