Challenge Problem Removing a Discontinuity In Example 5 we graphed the rational function R ( x ) = 2 x 2 − 5 x + 2 x 2 − 4 and found that the graph has a hole at the point ( 2 , 3 4 ) . Therefore, the graph of R is discontinuous at ( 2 , 3 4 ) . We can remove this discontinuity by defining the rational function R using the following piecewise-defined function: R ( x ) = { 2 x 2 − 5 x + 2 x 2 − 4 if x ≠ 2 3 4 if x = 2 Redefine R from Problem 33 so that the discontinuity at x = 3 is removed. Redefine R from Problem 33 so that the discontinuity at x = 3 2 is removed. R ( x ) = x 2 + x − 12 x 2 − x − 6
Challenge Problem Removing a Discontinuity In Example 5 we graphed the rational function R ( x ) = 2 x 2 − 5 x + 2 x 2 − 4 and found that the graph has a hole at the point ( 2 , 3 4 ) . Therefore, the graph of R is discontinuous at ( 2 , 3 4 ) . We can remove this discontinuity by defining the rational function R using the following piecewise-defined function: R ( x ) = { 2 x 2 − 5 x + 2 x 2 − 4 if x ≠ 2 3 4 if x = 2 Redefine R from Problem 33 so that the discontinuity at x = 3 is removed. Redefine R from Problem 33 so that the discontinuity at x = 3 2 is removed. R ( x ) = x 2 + x − 12 x 2 − x − 6
Solution Summary: The author explains how to remove discontinuity at x=3 by redefining the function R(x).
Challenge Problem Removing a Discontinuity In Example
5
we graphed the rational function
R
(
x
)
=
2
x
2
−
5
x
+
2
x
2
−
4
and found that the graph has a hole at the point
(
2
,
3
4
)
. Therefore, the graph of
R
is discontinuous at
(
2
,
3
4
)
. We can remove this discontinuity by defining the rational function
R
using the following piecewise-defined function:
R
(
x
)
=
{
2
x
2
−
5
x
+
2
x
2
−
4
if
x
≠
2
3
4
if
x
=
2
Redefine
R
from Problem
33
so that the discontinuity at
x
=
3
is removed.
Redefine
R
from Problem
33
so that the discontinuity at
x
=
3
2
is removed.
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.