Conceptual Physics / MasteringPhysics (Book & Access Card)
12th Edition
ISBN: 9780321908605
Author: Paul G. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 35, Problem 41RCQ
According to Newtonian mechanics, the momentum of the bus in the preceding problem is p = mv. According to relativity, it is p = γ. How does the actual momentum of the bus moving at O.99c compare with the momentum it would have if
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
Conceptual Physics / MasteringPhysics (Book & Access Card)
Ch. 35 - Prob. 1RCQCh. 35 - Prob. 2RCQCh. 35 - Prob. 3RCQCh. 35 - Prob. 4RCQCh. 35 - Prob. 5RCQCh. 35 - Prob. 6RCQCh. 35 - Prob. 7RCQCh. 35 - Prob. 8RCQCh. 35 - Prob. 9RCQCh. 35 - Prob. 10RCQ
Ch. 35 - Prob. 11RCQCh. 35 - Prob. 12RCQCh. 35 - What do we call the “stretching out” of time?Ch. 35 - Prob. 14RCQCh. 35 - Prob. 15RCQCh. 35 - Prob. 16RCQCh. 35 - Prob. 17RCQCh. 35 - Prob. 18RCQCh. 35 - Prob. 19RCQCh. 35 - Prob. 20RCQCh. 35 - Prob. 21RCQCh. 35 - Prob. 22RCQCh. 35 - Prob. 23RCQCh. 35 - Prob. 24RCQCh. 35 - Prob. 25RCQCh. 35 - Prob. 26RCQCh. 35 - Prob. 27RCQCh. 35 - Prob. 28RCQCh. 35 - Prob. 29RCQCh. 35 - Prob. 30RCQCh. 35 - Prob. 31RCQCh. 35 - Prob. 32RCQCh. 35 - Prob. 33RCQCh. 35 - Prob. 34RCQCh. 35 - Prob. 35RCQCh. 35 - Prob. 36RCQCh. 35 - Prob. 37RCQCh. 35 - Prob. 38RCQCh. 35 - Prob. 39RCQCh. 35 - Prob. 40RCQCh. 35 - According to Newtonian mechanics, the momentum of...Ch. 35 - Prob. 42RCQCh. 35 - Prob. 43RCQCh. 35 - Prob. 44RCQCh. 35 - Prob. 45RCQCh. 35 - Prob. 46RCQCh. 35 - Prob. 47RCQCh. 35 - Prob. 48RCQCh. 35 - Prob. 49RCQCh. 35 - Prob. 50RCQCh. 35 - Prob. 51RCQCh. 35 - Prob. 52RCQCh. 35 - Prob. 53RCQCh. 35 - Prob. 54RCQCh. 35 - Prob. 55RCQCh. 35 - Prob. 56RCQCh. 35 - Prob. 57RCQCh. 35 - Prob. 58RCQCh. 35 - Prob. 59RCQCh. 35 - Prob. 60RCQCh. 35 - Prob. 61RCQCh. 35 - Prob. 62RCQCh. 35 - Prob. 63RCQCh. 35 - Prob. 64RCQCh. 35 - Prob. 65RCQCh. 35 - Prob. 66RCQCh. 35 - Prob. 67RCQCh. 35 - Prob. 68RCQCh. 35 - Prob. 69RCQCh. 35 - Prob. 70RCQCh. 35 - Prob. 71RCQCh. 35 - Prob. 72RCQCh. 35 - Prob. 73RCQCh. 35 - Prob. 74RCQCh. 35 - Prob. 75RCQCh. 35 - Prob. 76RCQCh. 35 - Prob. 77RCQCh. 35 - Prob. 78RCQCh. 35 - Prob. 79RCQCh. 35 - Prob. 80RCQCh. 35 - Prob. 81RCQCh. 35 - Prob. 82RCQCh. 35 - Prob. 83RCQCh. 35 - According to E = mc2, how does the amount of...Ch. 35 - Prob. 85RCQCh. 35 - Prob. 86RCQCh. 35 - Prob. 87RCQCh. 35 - Prob. 88RCQCh. 35 - Prob. 89RCQCh. 35 - Prob. 90RCQCh. 35 - Prob. 91RCQCh. 35 - Prob. 92RCQCh. 35 - Prob. 93RCQCh. 35 - Prob. 94RCQCh. 35 - Prob. 95RCQCh. 35 - Prob. 96RCQCh. 35 - Prob. 97RCQCh. 35 - Prob. 98RCQCh. 35 - Prob. 99RCQCh. 35 - Prob. 100RCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardOwen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardConsider an electron moving with speed 0.980c. a. What is the rest mass energy of this electron? b. What is the total energyof this electron? c. What is the kinetic energy of this electron?arrow_forward
- Owen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forwardCalculate the momentum of a proton moving with a speed of (a) 0.010c, (b) 0.50c, (c) 0.90c. (d) Convert the answers of (a)(c) to MeV/c.arrow_forwardAn observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at x1 = y1 = z1 = t1 = 0 and the second at x2 = 100 m, y2 = z2 = t2 = 0. (a) What are the coordinates of these two events in a frame S moving in the standard configuration at 0.70c relative to S? (b) How far apart are the events in S? (c) Are the events simultaneous in S? If not, what is the difference in time between the events, and which event occurs first?arrow_forward
- Joe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forwardYou measure the volume of a cube at rest to be V0. You then measure the volume of the same cube as it passes you in a direction parallel to one side of the cube. The speed of the cube is 0.980c, so 5. Is the volume you measure close to (a) V0/25, (b) V0/5, (c) V0, (d) 5V0, or (e) 25V0?arrow_forwardOwen and Dina are at rest in frame S, which is moving with a speed of 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P26.45). Owen throws the ball to Dina with a speed of 0.800c (according to Owen) and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, and (d) how fast is the ball moving? Figure. P26.45arrow_forward
- (a) How long would the muon in Example 28.1 have lived as observed on the Earth if its velocity was 0.0500c ? (b) How far would it have traveled as observed on the Earth? (c) What distance is this in the muon's frame?arrow_forwardA spacecraft moves at a speed of 0.900c. If its length is L as measured by an observer on the spacecraft, what is the length measured by a ground observer?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY