Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 20P
(a)
To determine
The ground state wave-function of the particle.
(b)
To determine
The allowed energy states.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The wavefunction for the particle in a one-dimensional infinite potential well is given by
V(x, t) = VI
2
e-iEnt/h En
n?n?h?
sin
2mL2
with 0
Ffor a particle rotating on a ring,
(a) give the expression of the probability py(?) of finding the particle at angle ? in the state

6QM
Please answer question throughly and detailed.
Chapter 35 Solutions
Physics for Scientists and Engineers
Ch. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - Prob. 3PCh. 35 - Prob. 4PCh. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10P
Ch. 35 - Prob. 11PCh. 35 - Prob. 12PCh. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - Prob. 19PCh. 35 - Prob. 20PCh. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38P
Knowledge Booster
Similar questions
- Consider a potential barrier represented as follows: U(x) = 0 if x < 0; εx if 0 < x < a; 0 if x > a Determine the transmission coefficient as a function of particle energy.arrow_forwardi need the answer quicklyarrow_forwardone-dimensional A one-particle, system has the potential energy function V = V₁ for 0 ≤ x ≤ 1 and V = ∞ elsewhere (where Vo is a constant). a) Use the variation function = sin() for 0 ≤ x ≤ 1 and = 0 elsewhere to estimate the ground-state energy of this system. b) Calculate the % relative error.arrow_forward
- Which of the following functions can be normalized (in all cases the range for xis from x = −∞ to ∞, and a is a positive constant): (i) e^−ax2; (ii) e^−ax. Which of these functions are acceptable as wavefunctions?arrow_forwardConsider a particle with the following wave-function: ,xL and L and A are constants. (a) What is the normalization constant A (in terms of L)? (b) What is (in terms of L)? ? (ie, ) (c) What is the probability that the particle will be found within x=0 and L/2?arrow_forwardA particle of mass m, which moves freely inside an infinite potential well of length a, is initially in the state y(x,0)=√√3/5a sin (3xx/a)+ (1/√5a) sin (5mx/a). (a) Find y (x, t) at any later time t. Calculate the pr Lility density of thouarrow_forward
- Calculate the period of oscillation of ?(x,t) for a particle of mass 1.67 × 10-27 kg in the first excited state of a box of width 1.68 × 10-15 m.arrow_forwardFor the infinite square-well potential, fi nd the probability that a particle in its ground state is in each third of the one-dimensional box: 0 ≤ x ≤ L/3, L/3 ≤ x ≤ 2L/3, 2L/3 ≤ x≤ L. Check to see that the sum of the probabilities is one.arrow_forwardA harmonic oscillator of mass m and angular frequency w is in the initial state of wavefunction Ф(х, 0) — Aiфо(х) — 2Аф, (х) + 2Aiф,(х) Write the normalized function p (x, t) and calculate the uncertainties Ax and Ap in the state of wavefunction Þ(x, t)arrow_forward
- B) Suppose an harmonic oscillator in state (1) Calculate the expectation value of x? 6arrow_forwardSuppose a harmonic oscillator is subject to a perturbation av = Ahw (&/#0)* . where ro = mw/h is the length scale of the problem. a) Use Rayleigh-Schrödinger perturbation theory to find the first and second order corrections to the energies of the n'th level. b) Discuss the applicability of the perturbative approach for states with large n,arrow_forwardThe wavefunction for a harmonic oscillator with v= 1 is given by: y exp{-1²} y 2 Vv1 = Ny 2y exp · (x²) ¹/2 Determine the expectation value for root-mean-square position,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON