Concept explainers
Does the spacing between fringes in a two-slit interference pattern increase, decrease, or stay the same if (a) the slit separation is increased, (b) the color of the light is switched from red to blue, and (c) the whole apparatus is submerged in cooking sherry? (d) If the slits are illuminated with white light, then at any side maximum, does the blue component or the red component peak closer to the central maximum?

To find:
a) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the slit separation is increased?
b) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red to blue?
c) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the whole apparatus is submerged in cooking sherry?
d) If the slits are illuminated with white light, then at any side maximum does the blue component or the red component peak closer to the central maximum?
Answer to Problem 1Q
Solution:
a) The spacing between the fringes in a two-slit interference pattern decreases if the slit separation is increased.
b) The spacing between the fringes in a two-slit interference pattern decreases if the color of the light is switched from red to blue.
c) The spacing between the fringes in a two-slit interference pattern decreases if the whole apparatus is submerged in cooking sherry.
d) If the slits are illuminated with white light, then at any side maximum the blue component peak will be closer to the central maximum.
Explanation of Solution
1) Concept:
We use the concept of double slit experiment. Using the equation, we can determine whether the spacing between the fringes will increase, decrease or stay same. For part c), we use the relation between the initial and the new wavelength.
2) Formulae:
3) Calculations:
a) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the slit separation is increased?
Using the equation,
In this equation,
From the above equation if we increase the slit separation d, the spacing between the fringes decreases.
b) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red to blue?
We know that the wavelength of the light spectrum decreased from red to blue.
So, here, if
c) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the whole apparatus is submerged in cooking sherry?
We know,
We can write the wavelength as
We get,
So,
d) If the slits are illuminated with white light, then at any side maximum does the blue component or the red component peak closer to the central maximum?
Here, the blue component peak will be closer to the central maximum because
And for the lowest value of
Hence, the blue component will be closer to the central maximum.
Conclusion:
We can use the concept of double slit experiment to determine the spacing between the fringes.
Want to see more full solutions like this?
Chapter 35 Solutions
FUNDAMENTALS OF PHYSICS EXTEND 11E
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
Campbell Biology (11th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Organic Chemistry (8th Edition)
- pls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forward
- pls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forward
- pls help on all asked questions kindlyarrow_forward17. Two charges, one of charge +2.5 × 10-5 C and the other of charge +3.7 × 10-6 C, are 25.0 cm apart. The +2.5 × 10−5 C charge is to the left of the +3.7 × 10−6 C charge. a. Draw a diagram showing the point charges and label a point Y that is 20.0 cm to the left of the +3.7 × 10-6 C charge, on the line connecting the charges. (Field lines do not need to be drawn.) b. Calculate the net electric field at point Y.arrow_forward3arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





