EBK PHYSICS FOR SCIENTISTS & ENGINEERS
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 35, Problem 1Q

Radio waves and light are both electromagnetic waves. Why can a radio receive a signal behind a hill when we cannot see the transmitting antenna?

Expert Solution & Answer
Check Mark
To determine

Explain the reason for the radio is receiving the signal behind the hill but one cannot see the transmitting antenna.

Answer to Problem 1Q

The size (wavelength) of the radio waves and hill is comparable so, wave is diffracted from the hill and radio receives signals while the size (wavelength) of the visible waves and hill is not comparable so it could not be diffracted and we cannot see antenna.

Explanation of Solution

Electromagnetic waves are the waves consisting of oscillating electric and magnetic fields. There is a electromagnetic spectra consisting of electyromagnetic waves of different wavelengths. Radio and visible waves are one of them.

Radio waves have  wavelength ranges from 1mm-100km whereas the visible light waves have wavelength range from 380nm-740nm. Radio waves can diffract through normal sized objects such as hills because of its large wavelength but visible light cannot diffract through the hills due to shorter wavelength.

The slight bending of light from the edge of the object is known as ‘Diffraction’. The light would be diffracted only when the size of the object and the light are comparable to each other.

Conclusion:

Thus, the size (wavelength) of the radio waves and hill is comparable so, wave is diffracted from the hill and radio receives signals while the size (wavelength) of the visible waves and hill is not comparable so it could not be diffracted and we cannot see antenna.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μC
In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?
Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor  µC 6.00 µF capacitor  µC 3.00 µF capacitor  µC capacitor C  µC

Chapter 35 Solutions

EBK PHYSICS FOR SCIENTISTS & ENGINEERS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY