PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
10th Edition
ISBN: 9781337888462
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 7P
(a)
To determine
The distance that the reflected light beam travels before striking mirror 2.
(b)
To determine
The direction in which the light beam travel after being reflected from mirror 2.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Answer no. 2
Consider a beam of light from the left entering a prism of apex angle Φ as shown. Two angles of incidence, θ1 and θ3, are shown as well as two angles of refraction, θ2 and θ4. Show that Φ = θ2 + θ3.
A ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of
?1 = 41.0°
with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle
?2
with respect to the normal.
A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle ?1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle ?2 with the vertical.
(a)
Suppose that the second medium is flint glass. What is the angle of refraction,
?2
(in degrees)? (Enter your answer to at least one decimal place.)
Answer in degrees°
(b)
Suppose that the second medium is crown glass. What is the angle of refraction,
?2,
in this case (in degrees)? (Enter your answer to at least one decimal place.)
Answer in degrees °
(c)
Finally, suppose that…
Chapter 34 Solutions
PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
Ch. 34.3 - Prob. 34.1QQCh. 34.4 - If beam is the incoming beam in Figure 34.10b,...Ch. 34.4 - Light passes from a material with index of...Ch. 34.6 - In photography, lenses in a camera use refraction...Ch. 34.7 - Prob. 34.5QQCh. 34 - Prob. 1PCh. 34 - The Apollo 11 astronauts set up a panel of...Ch. 34 - As a result of his observations, Ole Roemer...Ch. 34 - A dance hall is built without pillars and with a...Ch. 34 - You are working for an optical research company...
Ch. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Two flat, rectangular mirrors, both perpendicular...Ch. 34 - Prob. 9PCh. 34 - A ray of light strikes a flat block of glass (n =...Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - A laser beam is incident at an angle of 30.0 from...Ch. 34 - A ray of light strikes the midpoint of one face of...Ch. 34 - When you look through a window, by what time...Ch. 34 - Light passes from air into flint glass at a...Ch. 34 - You have just installed a new bathroom in your...Ch. 34 - A triangular glass prism with apex angle 60.0 has...Ch. 34 - You are working at your university swimming...Ch. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - A submarine is 300 m horizontally from the shore...Ch. 34 - Prob. 23PCh. 34 - A light beam containing red and violet wavelengths...Ch. 34 - Prob. 25PCh. 34 - The speed of a water wave is described by v=gd,...Ch. 34 - For 589-nm light, calculate the critical angle for...Ch. 34 - Prob. 28PCh. 34 - A room contains air in which the speed of sound is...Ch. 34 - Prob. 30PCh. 34 - An optical fiber has an index of refraction n and...Ch. 34 - Consider a horizontal interface between air above...Ch. 34 - How many times will the incident beam in Figure...Ch. 34 - Consider a beam of light from the left entering a...Ch. 34 - Why is the following situation impossible? While...Ch. 34 - Prob. 36APCh. 34 - When light is incident normally on the interface...Ch. 34 - Refer to Problem 37 for its description of the...Ch. 34 - A light ray enters the atmosphere of the Earth and...Ch. 34 - A light ray enters the atmosphere of a planet and...Ch. 34 - Prob. 41APCh. 34 - Prob. 42APCh. 34 - Prob. 43APCh. 34 - Prob. 44APCh. 34 - Prob. 45APCh. 34 - As sunlight enters the Earths atmosphere, it...Ch. 34 - A ray of light passes from air into water. For its...Ch. 34 - Prob. 48APCh. 34 - Prob. 49APCh. 34 - Figure P34.50 shows a top view of a square...Ch. 34 - Prob. 51APCh. 34 - Prob. 52CPCh. 34 - Prob. 53CPCh. 34 - Pierre de Fermat (16011665) showed that whenever...Ch. 34 - Prob. 55CPCh. 34 - Suppose a luminous sphere of radius R1 (such as...Ch. 34 - Prob. 57CP
Knowledge Booster
Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardConsider a beam of light from the left entering a prism of apex angle as shown in Figure P34.34. Two angles of incidence, 1, and 3, are shown as Hell as two angles of refraction, 2 and 4. Show that = 1 + 3. Figure P34.34arrow_forwardA ray of light is incident upon a surface of a block of transparent material, as shown in the figure. The material outside the block (n₁ =1) is air. The block's material has an index of refraction n₂ 1.48. The angle of incidence 8₁ = 51.0 degrees. Note that this angle is measured relative to the surface normal (the dotted line perpendicular to the surface). What is the angle of reflection (0₁')? 0₁' = degrees Part of the ray is refracted upon entering the material. What is the angle of refraction within the material (0₂)? 0₂ = degrees What would the block's index of refraction need to become in order for the angle of refraction (02) to be 2 degrees less than what it was originally? New n₂ = n₁ n₂ 0₁' reflected ray refracted ray :0₂arrow_forward
- A ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of ?1 = 34.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle ?2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle ?1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle ?2 with the vertical. (a) Suppose that the second medium is flint glass. What is the angle of refraction, ?2 (in degrees)? (Enter your answer to at least one decimal place.) ° (b) Suppose that the second medium is fused quartz. What is the angle of refraction, ?2, in this case (in degrees)? (Enter your answer to at least one decimal place.) ° (c) Finally, suppose that the second medium is ethyl…arrow_forwardA ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of ?1 = 34.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle ?2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle ?1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle ?2 with the vertical. (a) Suppose that the second medium is flint glass. What is the angle of refraction, ?2 (in degrees)? (Enter your answer to at least one decimal place.) Check that your calculator is set for angles in degrees. Double-check the index of refraction you have obtained for the second medium from your textbook or another reliable source. Be sure that you are using the sin and sin−1 functions…arrow_forwardThe drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.69. A ray of light is incident on the glass at point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B? A 30.0arrow_forward
- In the figure below light begins in material 1 with index of refraction ng = 1.21 and makes an angle with the normal (dotted) line of 01= 34° as it strikes material 2. The light then refracts into material 2 with index of refraction n2 = 1.78 and unknown angle of refraction 02. Lastly, the light enters material 3 with unknown index of refraction ng and makes an angle 03= 26° with the normal line. What is the index of refraction of the bottom material n3? NOTE: Please enter your answer with three significant figures. Do not use scientific notation. Do not enter units (your answer is unitless).arrow_forwardThe drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.59. A ray of light is incident on the glass at point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B?arrow_forwardThe drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.59. A ray of light is incident on the glass at point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B? Number i Units 30.0 A Barrow_forward
- A ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of θ1 = 32.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle θ2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle θ1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle θ2 with the vertical. (a) Suppose that the second medium is water. What is the angle of refraction, θ2 (in degrees)? (Enter your answer to at least one decimal place.) (b) Suppose that the second medium is flint glass. What is the angle of refraction, θ2, in this case (in degrees)? (Enter your answer to at least one decimal place.) (c) Finally, suppose that the second medium is glycerine. What is the…arrow_forwardA beam of light reflects and refracts at point A on the interface between material 1 (n₁ = 1.33) and material 2 (n2 = 1.66). The incident beam makes an angle of 40° with the interface. What is the angle of reflection at point A?arrow_forwardTwo smooth reflecting surfaces (A and B) are perpendicular to each other. Light strikes surface A at a point 12 cm from the point of intersection of surfaces A and B. If the angle of incidence θ1 = 300, how far from the point of intersection of the two surfaces will the reflected light from surface A strike surface B?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning