Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
1st Edition
ISBN: 9781305259836
Author: Debora M. Katz
Publisher: Cengage Learning
Question
Book Icon
Chapter 34, Problem 73PQ

(a)

To determine

The direction in which the wave is travelling.

(a)

Expert Solution
Check Mark

Answer to Problem 73PQ

The wave is travelling along the positive Z-direction.

Explanation of Solution

Since the given equation of the electric field of the wave contains the position variable ‘z’, therefore. The wave travels in the positive Z-direction.

Conclusion:

Therefore, the wave is travelling along the positive Z-direction.

(b)

To determine

The frequency, angular frequency and wave number of the wave.

(b)

Expert Solution
Check Mark

Answer to Problem 73PQ

The frequency of the wave is 6.60×1014Hz, the angular frequency of the wave is 4.15×1015rad/s and the wave number of the wave is 1.40×107m1.

Explanation of Solution

Write the expression for the frequency of an electromagnetic wave.

    f=cλ                                                             (I)

Here c is the speed of light and f is the frequency of light and λ is the wavelength.

Write the expression for the angular frequency of the wave.

  ω=2πf                                          (II)

Here, ω is the angular frequency and f is the frequency of the wave.

Write the expression for the wave number of the wave.

  k=2πλ                                          (III)

Here, k is the wave number and λ is the wavelength of the wave.

Conclusion:

Substitute 3×108m/s for c and 454nm for λ in equation (I) to find f.

    f=3×108m/s(454nm×109m1m)

  =6.60×1014Hz

Substitute equation (II) in the above equation to find ω.

    ω=2π(6.60×1014Hz)=4.15×1015rad/s

Substitute 454nm for  λ in (III) to find k.

    k=2π(454nm×109m1m)=1.40×107m1

Therefore, the frequency of the wave is 6.60×1014Hz, the angular frequency of the wave is 4.15×1015rad/s and the wave number of the wave is 1.40×107m1.

(c)

To determine

The direction in which the magnetic field of the wave oscillates.

(c)

Expert Solution
Check Mark

Answer to Problem 73PQ

The magnetic field of the wave oscillates in the negative X-direction.

Explanation of Solution

Since, the wave is travelling along the Z direction, and the electric field oscillates along the Y-direction. Therefore, the magnetic field oscillates along the X-direction.

Conclusion:

Therefore, the magnetic field of the wave oscillates in the negative X-direction.

(d)

To determine

The equation of the magnetic field of the wave.

(d)

Expert Solution
Check Mark

Answer to Problem 73PQ

The equation of the magnetic field of the wave is B(z,t)=(1.67×1011T)sin[(1.40×107m1)z(4.15×1015rad/s)t]

Explanation of Solution

Write the expression for the maximum magnetic field.

    Bmax=Emaxc                                                                                       (I).

Here, Emax is the maximum electric field, c is the speed of light, and Bmax is the maximum magnetic field.

Write the equation for the magnetic field.

    B(z,t)=Bmaxsin(kzωt)                                                           (II)

Conclusion:

Substitute 5.00×103V/m for Emax and 3.0×108m/s for c in (I) equation to find Bmax.

    Bmax=5.00×103V/m3.0×108m/s=1.67×1011T

Substitute 1.67×1011T for Bmax, 1.40×107m1 for k, and 4.15×1015rad/s for ω in (II) equation to find B(z,t).

    B(z,t)=(1.67×1011T)sin[(1.40×107m1)z(4.15×1015rad/s)t]

Therefore, the equation for the magnetic field is B(z,t)=(1.67×1011T)sin[(1.40×107m1)z(4.15×1015rad/s)t]

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Four point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…
Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1)  Charge q3 is to the right of charge q2. 2)  Charge q3 is between charges q1 and q2. 3)  Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1)  The magnitude of the net force on charge q3 would still be zero. 2)  The effect depends upon the numeric value of charge q3. 3)  The net force on charge q3 would be towards q2. 4)  The net force on charge q3 would be towards q1. D. Select option that…
The magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.

Chapter 34 Solutions

Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics

Ch. 34 - Prob. 4PQCh. 34 - A solenoid with n turns per unit length has radius...Ch. 34 - Prob. 6PQCh. 34 - Prob. 7PQCh. 34 - Prob. 8PQCh. 34 - Prob. 9PQCh. 34 - Prob. 10PQCh. 34 - Prob. 11PQCh. 34 - Prob. 12PQCh. 34 - Prob. 13PQCh. 34 - Prob. 14PQCh. 34 - Prob. 15PQCh. 34 - Prob. 16PQCh. 34 - Prob. 17PQCh. 34 - Prob. 18PQCh. 34 - Prob. 19PQCh. 34 - Prob. 20PQCh. 34 - Ultraviolet (UV) radiation is a part of the...Ch. 34 - Prob. 22PQCh. 34 - What is the frequency of the blue-violet light of...Ch. 34 - Prob. 24PQCh. 34 - Prob. 25PQCh. 34 - Prob. 26PQCh. 34 - WGVU-AM is a radio station that serves the Grand...Ch. 34 - Suppose the magnetic field of an electromagnetic...Ch. 34 - Prob. 29PQCh. 34 - Prob. 30PQCh. 34 - Prob. 31PQCh. 34 - Prob. 32PQCh. 34 - Prob. 33PQCh. 34 - Prob. 34PQCh. 34 - Prob. 35PQCh. 34 - Prob. 36PQCh. 34 - Prob. 37PQCh. 34 - Prob. 38PQCh. 34 - Prob. 39PQCh. 34 - Prob. 40PQCh. 34 - Prob. 41PQCh. 34 - Prob. 42PQCh. 34 - Prob. 43PQCh. 34 - Prob. 44PQCh. 34 - Prob. 45PQCh. 34 - Prob. 46PQCh. 34 - Prob. 47PQCh. 34 - Prob. 48PQCh. 34 - Prob. 49PQCh. 34 - Prob. 50PQCh. 34 - Prob. 51PQCh. 34 - Prob. 52PQCh. 34 - Optical tweezers use light from a laser to move...Ch. 34 - Prob. 54PQCh. 34 - Prob. 55PQCh. 34 - Prob. 57PQCh. 34 - Prob. 58PQCh. 34 - Prob. 59PQCh. 34 - Prob. 60PQCh. 34 - Some unpolarized light has an intensity of 1365...Ch. 34 - Prob. 62PQCh. 34 - Prob. 63PQCh. 34 - Prob. 64PQCh. 34 - Unpolarized light passes through three polarizing...Ch. 34 - The average EarthSun distance is 1.00 astronomical...Ch. 34 - Prob. 67PQCh. 34 - Prob. 68PQCh. 34 - Prob. 69PQCh. 34 - Prob. 70PQCh. 34 - Prob. 71PQCh. 34 - Prob. 72PQCh. 34 - Prob. 73PQCh. 34 - Prob. 74PQCh. 34 - CASE STUDY In Example 34.6 (page 1111), we...Ch. 34 - Prob. 76PQCh. 34 - Prob. 77PQCh. 34 - Prob. 78PQCh. 34 - Prob. 79PQCh. 34 - Prob. 80PQCh. 34 - Prob. 81PQCh. 34 - Prob. 82PQCh. 34 - Prob. 83PQCh. 34 - In Section 34-1, we summarized classical...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College